cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A000043 Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281
Offset: 1

Views

Author

Keywords

Comments

Equivalently, integers k such that 2^k - 1 is prime.
It is believed (but unproved) that this sequence is infinite. The data suggest that the number of terms up to exponent N is roughly K log N for some constant K.
Length of prime repunits in base 2.
The associated perfect number N=2^(p-1)*M(p) (=A019279*A000668=A000396), has 2p (=A061645) divisors with harmonic mean p (and geometric mean sqrt(N)). - Lekraj Beedassy, Aug 21 2004
In one of his first publications Euler found the numbers up to 31 but erroneously included 41 and 47.
Equals number of bits in binary expansion of n-th Mersenne prime (A117293). - Artur Jasinski, Feb 09 2007
Number of divisors of n-th even perfect number, divided by 2. Number of divisors of n-th even perfect number that are powers of 2. Number of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n). - Omar E. Pol, Feb 24 2008
Number of divisors of n-th even superperfect number A061652(n). Numbers of divisors of n-th superperfect number A019279(n), assuming there are no odd superperfect numbers. - Omar E. Pol, Mar 01 2008
Differences between exponents when the even perfect numbers are represented as differences of powers of 2, for example: The 5th even perfect number is 33550336 = 2^25 - 2^12 then a(5)=25-12=13 (see A135655, A133033, A090748). - Omar E. Pol, Mar 01 2008
Number of 1's in binary expansion of n-th even perfect number (see A135650). Number of 1's in binary expansion of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n) (see A135652, A135653, A135654, A135655). - Omar E. Pol, May 04 2008
Indices of the numbers A006516 that are also even perfect numbers. - Omar E. Pol, Aug 30 2008
Indices of Mersenne numbers A000225 that are also Mersenne primes A000668. - Omar E. Pol, Aug 31 2008
The (prime) number p appears in this sequence if and only if there is no prime q<2^p-1 such that the order of 2 modulo q equals p; a special case is that if p=4k+3 is prime and also q=2p+1 is prime then the order of 2 modulo q is p so p is not a term of this sequence. - Joerg Arndt, Jan 16 2011
Primes p such that sigma(2^p) - sigma(2^p-1) = 2^p-1. - Jaroslav Krizek, Aug 02 2013
Integers k such that every degree k irreducible polynomial over GF(2) is also primitive, i.e., has order 2^k-1. Equivalently, the integers k such that A001037(k) = A011260(k). - Geoffrey Critzer, Dec 08 2019
Conjecture: for k > 1, 2^k-1 is (a Mersenne) prime or k = 2^(2^m)+1 (is a Fermat number) if and only if (k-1)^(2^k-2) == 1 (mod (2^k-1)k^2). - Thomas Ordowski, Oct 05 2023
Conjecture: for p prime, 2^p-1 is (a Mersenne) prime or p = 2^(2^m)+1 (is a Fermat number) if and only if (p-1)^(2^p-2) == 1 (mod 2^p-1). - David Barina, Nov 25 2024
Already as of Dec. 2020, all exponents up to 10^8 had been verified, implying that 74207281, 77232917 and 82589933 are indeed the next three terms. As of today, all exponents up to 130439863 have been tested at least once, see the GIMPS Milestones Report. - M. F. Hasler, Apr 11 2025
On June 23. 2025 all exponents up to 74340751 have been verified, confirming that 74207281 is the exponent of the 49th Mersenne Prime. - Rodolfo Ruiz-Huidobro, Jun 23 2025

Examples

			Corresponding to the initial terms 2, 3, 5, 7, 13, 17, 19, 31 ... we get the Mersenne primes 2^2 - 1 = 3, 2^3 - 1 = 7, 2^5 - 1 = 31, 127, 8191, 131071, 524287, 2147483647, ... (see A000668).
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 79.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.
  • F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 57.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 19.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 132-134.
  • B. Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.

Crossrefs

Cf. A000668 (Mersenne primes).
Cf. A028335 (integer lengths of Mersenne primes).
Cf. A000225 (Mersenne numbers).
Cf. A001348 (Mersenne numbers with n prime).

Programs

  • Mathematica
    MersennePrimeExponent[Range[48]] (* Eric W. Weisstein, Jul 17 2017; updated Oct 21 2024 *)
  • PARI
    isA000043(n) = isprime(2^n-1) \\ Michael B. Porter, Oct 28 2009
    
  • PARI
    is(n)=my(h=Mod(2,2^n-1)); for(i=1, n-2, h=2*h^2-1); h==0||n==2 \\ Lucas-Lehmer test for exponent e. - Joerg Arndt, Jan 16 2011, and Charles R Greathouse IV, Jun 05 2013
    forprime(e=2,5000,if(is(e),print1(e,", "))); /* terms < 5000 */
    
  • Python
    from sympy import isprime, prime
    for n in range(1,100):
        if isprime(2**prime(n)-1):
            print(prime(n), end=', ') # Stefano Spezia, Dec 06 2018

Formula

a(n) = log((1/2)*(1+sqrt(1+8*A000396(n))))/log(2). - Artur Jasinski, Sep 23 2008 (under the assumption there are no odd perfect numbers, Joerg Arndt, Feb 23 2014)
a(n) = A000005(A061652(n)). - Omar E. Pol, Aug 26 2009
a(n) = A000120(A000396(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Oct 30 2013

Extensions

Also in the sequence: p = 74207281. - Charles R Greathouse IV, Jan 19 2016
Also in the sequence: p = 77232917. - Eric W. Weisstein, Jan 03 2018
Also in the sequence: p = 82589933. - Gord Palameta, Dec 21 2018
a(46) = 42643801 and a(47) = 43112609, whose ordinal positions in the sequence are now confirmed, communicated by Eric W. Weisstein, Apr 12 2018
a(48) = 57885161, whose ordinal position in the sequence is now confirmed, communicated by Benjamin Przybocki, Jan 05 2022
Also in the sequence: p = 136279841. - Eric W. Weisstein, Oct 21 2024
As of Jan 31 2025, 48 terms are known, and are shown in the DATA section. Four additional numbers are known to be in the sequence, namely 74207281, 77232917, 82589933, and 136279841, but they may not be the next terms. See the GIMP website for the latest information. - N. J. A. Sloane, Jan 31 2025

A139306 Ultraperfect numbers: a(n) = 2^(2*p - 1), where p is A000043(n).

Original entry on oeis.org

8, 32, 512, 8192, 33554432, 8589934592, 137438953472, 2305843009213693952, 2658455991569831745807614120560689152, 191561942608236107294793378393788647952342390272950272
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Comments

Sum of n-th even perfect number and n-th even superperfect number.
Also, sum of n-th perfect number and n-th superperfect number, if there are no odd perfect and odd superperfect numbers, then the n-th perfect number is the difference between a(n) and the n-th superperfect number (see A135652, A135653, A135654 and A135655).

Examples

			a(5) = 33554432 because A000043(5) = 13 and 2^(2*13 - 1) = 2^25 = 33554432.
Also, if there are no odd perfect and odd superperfect numbers then we can write a(5) = A000396(5) + A019279(5) = A000396(5) + A061652(5) = 33554432.
		

Crossrefs

Programs

  • Mathematica
    2^(2 * MersennePrimeExponent[Range[10]] - 1) (* Amiram Eldar, Oct 17 2024 *)

Formula

a(n) = 2^(2*A000043(n) - 1). Also, a(n) = 2^A133033(n), if there are no odd perfect numbers. Also, a(n) = A000396(n) + A019279(n), if there are no odd perfect and odd superperfect numbers. Also, a(n) = A000396(n) + A061652(n), if there are no odd perfect numbers, then we can write: perfect number A000396(n) = a(n) - A061652(n).
a(n) = A061652(n)*(A000668(n)+1) = A061652(n)*A072868(n). - Omar E. Pol, Apr 13 2008

A133028 Even perfect numbers divided by 2.

Original entry on oeis.org

3, 14, 248, 4064, 16775168, 4294934528, 68719345664, 1152921504069976064, 1329227995784915872327346307976921088, 95780971304118053647396689042151819065498660774084608, 6582018229284824168619876730229361455111736159193471558891864064, 7237005577332262213973186563042994240786838745737417944533177174565599576064
Offset: 1

Views

Author

Omar E. Pol, Oct 20 2007, Apr 23 2008, Apr 28 2009

Keywords

Comments

a(13) has 314 digits and is too large to include. - R. J. Mathar, Oct 23 2007
Largest proper divisor of n-th even perfect number.
Also numbers k such that A000203(k) is divisible 24. - Ctibor O. Zizka, Jun 29 2009

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime(2^n-1)=true then 2^(n-2)*(2^n-1) else end if end proc: seq(a(n),n=1..120); # Emeric Deutsch, Oct 24 2007
  • Mathematica
    p = Select[2^Range[400] - 1, PrimeQ]; p*(p+1)/4 (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
    Map[2^(#-2) * (2^# - 1) &, MersennePrimeExponent[Range[12]]] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = A000396(n)/2. - R. J. Mathar, Oct 23 2007 [Assuming there are no odd perfect numbers. - Jianing Song, Sep 17 2022]
a(n) = 2^(A000043(n) - 2) * A000668(n). - Omar E. Pol, Mar 01 2008
a(n) = A032742(A000396(n)), assuming there are no odd perfect numbers.

Extensions

More terms from R. J. Mathar and Emeric Deutsch, Oct 23 2007

A133049 Squares of Mersenne primes A000668(n).

Original entry on oeis.org

9, 49, 961, 16129, 67092481, 17179607041, 274876858369, 4611686014132420609, 5316911983139663487003542222693990401, 383123885216472214589586755549637256619304505646776321
Offset: 1

Views

Author

Omar E. Pol, Oct 30 2007, Apr 23 2008

Keywords

Comments

Sum of last A000043(n) divisors of the n-th even perfect number. In other words; sum of divisors that are not powers of 2 of the n-th even perfect number, or sum of divisors that are multiples of the n-th Mersenne prime A000668(n) of the n-th even perfect number. See A139247 for more information.
See the structure of the divisors of perfect numbers in A135652, A135653, A135654 and A135655.

Examples

			a(3)=961 because the 3rd Mersenne prime is 31 and 31^2=961.
		

Crossrefs

Programs

  • Mathematica
    Select[2^Range[1000] - 1, PrimeQ]^2 (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    forprime(p=2, 1000, if(ispseudoprime(2^p-1), print1((2^p-1)^2", "))) \\ G. C. Greubel, Oct 03 2017

Formula

a(n) = A000668(n)^2

Extensions

More terms from Olaf Voß, Feb 13 2008

A133024 Divisors of 8128, the 4th perfect number.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064, 8128
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2007, Mar 03 2008, Dec 27 2008

Keywords

Comments

127 is the 4th Mersenne prime: A000668.
The number of divisors of the 4th perfect number is 2*A000043(4)=A061645(4)=14.
For the structure of this sequence and its binary expansion, see A135654.

Crossrefs

Cf. A018254, A018487. Perfect numbers: A000396.

Programs

Formula

For n=1..7 : a(n) = 2^(n-1). For n=8..14: a(n) = 2^(n-1) - 2^(n-8) = A000668(4)*2^(n-8).

A139247 Triangle read by rows: row n lists the divisors of n-th perfect number A000396(n) that are multiples of n-th Mersenne prime A000668(n).

Original entry on oeis.org

3, 6, 7, 14, 28, 31, 62, 124, 248, 496, 127, 254, 508, 1016, 2032, 4064, 8128, 8191, 16382, 32764, 65528, 131056, 262112, 524224, 1048448, 2096896, 4193792, 8387584, 16775168, 33550336, 131071, 262142, 524284, 1048568, 2097136, 4193792
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2008

Keywords

Comments

Also, row n list the divisors of n-th perfect number that are not powers of 2.
First term of row n is the n-th Mersenne prime A000668(n). Last term of row n is the n-th perfect number A000396(n). Row n has A000043(n) terms. The sum of row n is equal to A133049(n), the square of n-th Mersenne prime A000668(n).

Examples

			Triangle begins:
  3, 6,
  7, 14, 28
  31, 62, 124, 248, 496
  127, 254, 508, 1016, 2032, 4064, 8128
  ...
==========================================================
Row .... First term ..... Last term ....... Row sum ......
n ..... (A000668(n)) ... (A000396(n)) ... (A000668(n)^2) .
==========================================================
1 ............ 3 .............. 6 ......... 3^2 = 9
2 ............ 7 ............. 28 ......... 7^2 = 49
3 ........... 31 ............ 496 ........ 31^2 = 961
4 .......... 127 ........... 8128 ....... 127^2 = 16129
5 ......... 8191 ....... 33550336 ...... 8191^2 = 67092481
		

Crossrefs

A035526 Reverse and add (in binary).

Original entry on oeis.org

1, 10, 11, 110, 1001, 10010, 11011, 110110, 1010001, 10010110, 11111111, 111111110, 1011111101, 10111111010, 100011110111, 1011111101000, 1101011100101, 10111111010000, 11001011001101, 101111110100000
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains

Keywords

Comments

First 4 members are the divisors of 6 (the first perfect number), written in base 2 (see A135652, A135653, A135654, A135655). - Omar E. Pol, May 04 2008

Examples

			110 + 011 = 1001.
		

Crossrefs

Cf. A035522 for same sequence but written in base 10.
Cf. A007088.

Programs

  • Haskell
    a035526 = a007088 . a035522  -- Reinhard Zumkeller, Jan 02 2015
    
  • Python
    from itertools import accumulate, repeat
    def iterate(n, _): b = str(n); return int(bin(int(b, 2)+int(b[::-1], 2))[2:])
    def aupto(nn): return list(accumulate(repeat(1, nn), iterate))
    print(aupto(20)) # Michael S. Branicky, Jan 10 2021

Formula

a(n) = A007088(A035522(n)). - Reinhard Zumkeller, Jan 02 2015

A094026 Expansion of x(1+10x)/((1-x^2)(1-10x^2)).

Original entry on oeis.org

0, 1, 10, 11, 110, 111, 1110, 1111, 11110, 11111, 111110, 111111, 1111110, 1111111, 11111110, 11111111, 111111110, 111111111, 1111111110, 1111111111, 11111111110, 11111111111, 111111111110, 111111111111, 1111111111110
Offset: 0

Views

Author

Paul Barry, Apr 22 2004

Keywords

Comments

The expansion of x(1+kx)/((1-x^2)(1-kx^2)) has a(n)=k^((n+1)/2)/(2(sqrt(k)-1))-(-sqrt(k))^(n+1)/(2(sqrt(k)+1))-(-1)^n/2-(k+1)/(2(k-1)).
First 4 positive members are the divisors of 6 (the first perfect number), written in base 2 (see A135652, A135653, A135654, A135655). - Omar E. Pol, May 04 2008

Crossrefs

Programs

  • Magma
    I:=[0,1,10,11]; [n le 4 select I[n] else 11*Self(n-2)-10*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 25 2019
  • Mathematica
    LinearRecurrence[{0, 11, 0, -10}, {0, 1, 10, 11}, 30] (* Vincenzo Librandi, Apr 25 2019 *)
    CoefficientList[Series[x (1+10x)/((1-x^2)(1-10x^2)),{x,0,30}],x] (* Harvey P. Dale, Jul 07 2024 *)

Formula

a(n) = 10^(n/2)(5/9+sqrt(10)/18+(5/9-sqrt(10)/18)(-1)^n)-(-1)^n/2-11/18.

A138814 Divisors of 4064 (half the 4th perfect number).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 127, 254, 508, 1016, 2032, 4064
Offset: 1

Views

Author

Omar E. Pol, Mar 31 2008

Keywords

Comments

The n-th perfect number divided by 2 (A133028(n)) has 2*A090748(n) divisors, then this sequence has 12 members. First 6 members are the first 6 powers of 2 A000079. Last 6 members are multiples of 4th Mersenne prime A000668(4)=127. a(n) written in base 2 has n digit. See A138824 for the structure of this sequence.

Crossrefs

Perfect number divided by 2: A133028.

Programs

A138824 Divisors of 4064 (the 4th perfect number divided by 2), written in base 2.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 100000, 1111111, 11111110, 111111100, 1111111000, 11111110000, 111111100000
Offset: 1

Views

Author

Omar E. Pol, Mar 31 2008

Keywords

Comments

a(n) has n digits. See A138814 for more information.

Examples

			The structure of divisors of 4064 (see A138814)
.................................................................
n ........... Divisor . Formula ....... Divisor written in base 2
.................................................................
1) ................ 1 = 2^0 ........... 1
2) ................ 2 = 2^1 ........... 10
3) ................ 4 = 2^2 ........... 100
4) ................ 8 = 2^3 ........... 1000
5) ............... 16 = 2^4 ........... 10000
6) A134708(4) = .. 32 = 2^5 ........... 100000
7) A000668(4) = . 127 = 2^7 - 2^0 ..... 1111111
8) .............. 254 = 2^8 - 2^1 ..... 11111110
9) .............. 508 = 2^9 - 2^2 ..... 111111100
10) ............ 1016 = 2^10- 2^3 ..... 1111111000
11) ............ 2032 = 2^11- 2^4 ..... 11111110000
12) A133028(4) = 4064 = 2^12- 2^5 ..... 111111100000
		

Crossrefs

Perfect number divided by 2: A133028. Cf. A000043, A000396, A000668, A090748, A134708, A135654, A138814.

Programs

  • Mathematica
    FromDigits/@(IntegerDigits[#,2]&/@Divisors[4064]) (* Harvey P. Dale, Oct 12 2016 *)
Showing 1-10 of 13 results. Next