cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 4476 results. Next

A151281 Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 0), (1, 0), (1, 1)}.

Original entry on oeis.org

1, 2, 6, 16, 48, 136, 408, 1184, 3552, 10432, 31296, 92544, 277632, 824448, 2473344, 7365120, 22095360, 65920000, 197760000, 590790656, 1772371968, 5299916800, 15899750400, 47578857472, 142736572416, 427357700096, 1282073100288, 3840133464064, 11520400392192, 34517383151616, 103552149454848
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Comments

From Paul Barry, Jan 26 2009: (Start)
Image of 2^n under A155761. Binomial transform is A129637. Hankel transform is 2^C(n+1,2).
In general, the g.f. of the reversion of x*(1+c*x)/(1+a*x+b*x^2) is given by the continued fraction x/(1 -(a-c)*x -(b-a*c+c^2)*x^2/(1 -(a-2*c)*x -(b-a*c+c^2)*x^2/(1 -(a-2*c)*x -(b-a*c+c^2)*x^2/(1 - .... (End)
a(n) is the number of nondeterministic Dyck meanders of length n. See A368164 or the de Panafieu-Wallner article for the definiton of nondeterministc walks. A nondeterministic meander contains at least one classical meander, i.e., a walk never crossing the x-axis. - Michael Wallner, Dec 18 2023

Crossrefs

Cf. A368164 (nondeterministic Dyck bridges), A368234 (nondeterministic Dyck excursions).

Programs

  • Magma
    [n le 3 select Factorial(n) else (3*n*Self(n-1) + 8*(n-3)*Self(n-2) - 24*(n-3)*Self(n-3))/n: n in [1..41]]; // G. C. Greubel, Nov 09 2022
    
  • Maple
    N:= 1000: # to get terms up to a(N)
    S:= series((sqrt(1-8*x^2)+4*x-1)/(4*x*(1-3*x)),x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 18 2013
  • Mathematica
    aux[i_, j_, n_] := Which[Min[i, j, n]<0 || Max[i, j]>n, 0, n==0, KroneckerDelta[i, j, n], True, aux[i, j, n]= aux[-1+i, -1+j, -1+n] +aux[-1+i, j, -1+n] +aux[1+i, j, -1+n]]; Table[Sum[aux[i,j,n], {i,0,n}, {j,0,n}], {n,0,25}]
    a[n_]:= a[n]= If[n<3, (n+1)!, (3*(n+1)*a[n-1] +8*(n-2)*a[n-2] -24*(n-2)*a[n-3])/(n+1)]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
  • SageMath
    def a(n): # a = A151281
        if (n==0): return 1
        elif (n%2==1): return 3*a(n-1) - 2^((n-1)/2)*catalan_number((n-1)/2)
        else: return 3*a(n-1)
    [a(n) for n in (0..40)] # G. C. Greubel, Nov 09 2022

Formula

From Paul Barry, Jan 26 2009: (Start)
G.f.: 1/(1 -2*x -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 - .... (continued fraction).
G.f.: c(2*x^2)/(1-2*x*c(2*x^2)) = (sqrt(1-8*x^2) + 4*x - 1)/(4*x*(1-3*x)).
a(n) = Sum_{k=0..n} ((k+1)/(n+k+1))*C(n, (n-k)/2)*(1 +(-1)^(n-k))*2^((n-k)/2)*2^k.
Reversion of x*(1 + 2*x)/(1 + 4*x + 6*x^2). (End)
From Philippe Deléham, Feb 01 2009: (Start)
a(n) = Sum_{k=0..n} A120730(n,k)*2^k.
a(2*n+2) = 3*a(2*n+1), a(2*n+1) = 3*a(2*n) - 2^n*A000108(n).
a(2*n+1) = 3*a(2*n) - A151374(n). (End)
(n+1)*a(n) = 3*(n+1)*a(n-1) + 8*(n-2)*a(n-2) - 24*(n-2)*a(n-3). - R. J. Mathar, Nov 26 2012
a(n) ~ 3^n/2. - Vaclav Kotesovec, Feb 13 2014

A192364 Number of lattice paths from (0,0) to (n,n) using steps (0,1),(0,2),(1,0),(2,0),(1,1).

Original entry on oeis.org

1, 3, 21, 157, 1239, 10047, 82951, 693603, 5854581, 49778997, 425712429, 3657968097, 31555053921, 273109567797, 2370474720369, 20625186298269, 179841473895447, 1571088267426447, 13747953837604959, 120482775658910763, 1057293764707074027, 9289536349244758791, 81709329486947791419
Offset: 0

Views

Author

Eric Werley, Jun 29 2011

Keywords

Crossrefs

Cf. A091533.

Programs

  • Mathematica
    FullSimplify[CoefficientList[Series[(3-6*x+Sqrt[-1+4*x*(9*x-11)+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1]])/(Sqrt[10+8*x]*Sqrt[(1-x)*(1-9*x)]*(4*x*(9*x-11)-1+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1])^(1/4)), {x, 0, 10}], x]]
  • PARI
    /* same as in A092566 but use */
    steps=[[0,1], [0,2], [1,0], [2,0], [1,1]];
    /* Joerg Arndt, Jun 30 2011 */

Formula

From Vaclav Kotesovec, Oct 24 2012: (Start)
G.f.: (3 - 6*x + sqrt(-1 + 4*x*(9*x-11) + 4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))) / (sqrt(10+8*x)*sqrt((1-x)*(1-9*x))*(4*x*(9*x-11)-1+4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))^(1/4))
D-finite with recurrence: 15*(n-1)*n*a(n) = (n-1)*(133*n-54)*a(n-1) + (31*n^2 - 177*n + 224)*a(n-2) - (113*n^2 - 295*n + 144)*a(n-3) - 18*(n-3)*(2*n-5)*a(n-4)
a(n) ~ 3^(2*n+3/2)/(2*sqrt(14*Pi*n))
(End)
a(n) = A091533(2*n,n) for n >= 0. - Paul D. Hanna, Dec 11 2018
a(n) = [x^n*y^n] 1/(1 - x - y - x^2 - x*y - y^2) for n >= 0. - Paul D. Hanna, Dec 11 2018

Extensions

Terms > 425712429 by Joerg Arndt, Jun 30 2011

A229644 Cogrowth function of the group Baumslag-Solitar(2,2).

Original entry on oeis.org

1, 4, 28, 244, 2396, 25324, 281140, 3232352, 38151196, 459594316, 5628197948, 69859456440, 876985904276, 11115789165888, 142066687799680, 1828884017527504, 23694360858872604, 308714491495346028, 4042605442981407388, 53178663502737007352
Offset: 0

Views

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(2,2)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229645 Cogrowth function of the group Baumslag-Solitar(3,3).

Original entry on oeis.org

1, 4, 28, 232, 2108, 20364, 205696, 2149956, 23087260, 253400200, 2831688428, 32121034928, 368996930720, 4284878088040, 50221403053556, 593400572917032, 7061298334083484, 84555438345880932, 1018170456984477856, 12321676227943830972
Offset: 0

Views

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(3,3)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229646 Cogrowth function of the group Baumslag-Solitar(4,4).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19884, 196096, 1988424, 20611116, 217526524, 2330681348, 25296553088, 277653104800, 3077568629256, 34410056828392, 387725845018512, 4399241841920428, 50228061806093020, 576729989899675348
Offset: 0

Views

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(4,4)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229647 Cogrowth function of the group Baumslag-Solitar(5,5).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195376, 1971932, 20303084, 212400232, 2251379688, 24129199208, 261067326544, 2848016992032, 31295785633532, 346126420439512, 3850363854970476, 43057199315715676, 483795646775017312, 5459770924922887392
Offset: 0

Views

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(5,5)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229648 Cogrowth function of the group Baumslag-Solitar(6,6).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195352, 1970924, 20277036, 211864264, 2241723728, 23969620844, 258583473640, 2811005437348, 30762114003572, 338624821158892, 3747021722921964, 41656518905688504, 465062224305678280, 5211973807553021868
Offset: 0

Views

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(6,6)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229649 Cogrowth function of the group Baumslag-Solitar(7,7).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275692, 211825564, 2240852928, 23952708696, 258285519688, 2806105225928, 30685515254240, 337472968923532, 3730218568024236, 41417273400310152, 461722437389957236, 5166105817092273412
Offset: 0

Views

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(7,7)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229650 Cogrowth function of the group Baumslag-Solitar(8,8).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275660, 211823836, 2240798048, 23951367224, 258257552968, 2805581350056, 30676425237024, 337324008602512, 3727882769574860, 41381900166952348, 461201577710442388, 5158610797198820800
Offset: 0

Views

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(8,8)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229651 Cogrowth function of the group Baumslag-Solitar(9,9).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275660, 211823800, 2240795888, 23951292204, 258255572584, 2805537209648, 30675548482880, 337307986673572, 3727607821613388, 41377406950962504, 461130952671387592, 5157535231753964268
Offset: 0

Views

Author

Murray Elder, Sep 28 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(9,9)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.
Previous Showing 101-110 of 4476 results. Next