cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: _ne_

_ne_'s wiki page.

_ne_ has authored 14 sequences. Here are the ten most recent ones:

A154738 Decimal expansion of (log(640320^3 + 744)/Pi)^2.

Original entry on oeis.org

1, 6, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 2, 1, 6, 7, 7, 7, 9, 4, 2, 4, 5, 3, 3, 4, 1, 0, 6, 7, 9, 7, 8, 4, 9, 3, 0, 3, 6, 4, 7, 9, 7, 9, 5, 9, 9, 5, 5, 2, 6, 0, 3, 9, 5, 8, 8, 8, 2, 2, 4, 8, 2, 5, 7, 2, 5, 6, 5, 5, 1, 3, 5, 3, 1, 3, 6, 7, 2, 0, 5, 3, 4, 3
Offset: 3

Author

Kousaka Hideaki (kousaka(AT)d6.dion.ne.jp), Jan 14 2009

Keywords

Comments

A well-known real number that is very close to the integer 163.

Programs

  • Mathematica
    RealDigits[(Log[640320^3+744]/Pi)^2,10,120][[1]] (* Harvey P. Dale, Jan 06 2012 *)

Extensions

More terms from Klaus Brockhaus, Jan 15 2009

A154769 Zeroless primes with consecutive digits (1,..,9) starting with 1.

Original entry on oeis.org

1234567891, 1234567891234567891234567891, 1234567891234567891234567891234567891234567891234567891234567891234567
Offset: 1

Author

Kousaka Hideaki (kousaka(AT)d6.dion.ne.jp), Jan 15 2009

Keywords

Comments

The next term has 4690 digits. - Harvey P. Dale, Sep 27 2017

Programs

  • Mathematica
    Select[Table[FromDigits[PadRight[{},n,Range[9]]],{n,100}],PrimeQ] (* Harvey P. Dale, Sep 27 2017 *)

Extensions

Name changed by Arkadiusz Wesolowski, Aug 24 2011

A154760 Final digit of n!! (A006882).

Original entry on oeis.org

1, 1, 2, 3, 8, 5, 8, 5, 4, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0
Offset: 0

Author

Kousaka Hideaki (kousaka(AT)d6.dion.ne.jp), Jan 15 2009

Keywords

Comments

For n>8: a(n)=0 if n is even, a(n)=5 if n is odd. - Dmitry Kamenetsky, Jan 17 2009

Examples

			The final digit of n! is 1,2,6,4,0,0,0,0,0,0,0,0,0,...
		

Programs

  • Mathematica
    Join[Mod[Range[0,8]!!,10],PadRight[{},120,{5,0}]] (* Harvey P. Dale, Dec 16 2023 *)

Extensions

Offset corrected, more terms added by R. J. Mathar, Jan 18 2009

A154841 Decimal expansion of e^(Pi*sqrt(43)).

Original entry on oeis.org

8, 8, 4, 7, 3, 6, 7, 4, 3, 9, 9, 9, 7, 7, 7, 4, 6, 6, 0, 3, 4, 9, 0, 6, 6, 6, 1, 9, 3, 7, 4, 6, 2, 0, 7, 8, 5, 8, 5, 3, 7, 6, 8, 4, 7, 3, 9, 9, 1, 2, 7, 1, 3, 9, 1, 6, 0, 9, 1, 7, 5, 1, 4, 6, 2, 7, 8, 3, 4, 4, 8, 8, 1, 1, 4, 8, 7, 4, 7, 5, 9, 2, 1, 8, 9, 6, 3, 5, 6, 4, 3, 1, 0, 6, 0, 2, 3, 7, 1, 7, 1, 0, 1, 3, 7
Offset: 9

Author

Kousaka Hideaki (kousaka(AT)d6.dion.ne.jp), Jan 16 2009

Keywords

Comments

A real number that is very close to the integer 884736744 = 960^3 + 744.

Examples

			884736743.999777466034906661937462078585376847399127139160917514627834...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 225-226.

Programs

Extensions

More digits from R. J. Mathar, Jan 21 2009

A115595 The sequence 11,0,1,3333,2,3,5555,4,5,7777,6,7,9999,9,0,2222,1,2,4444,3,4,6666,5,6,8888,7,9,11 has three subsequences that have interesting patterns inside it. Namely, 11,0,(1),3333,2,(3),5555,4,(5),7777,6,(7),9999,9,(0),2222,1,(2),4444,3,(4),6666,5,(6),8888,7,(9),11.

Original entry on oeis.org

11, 0, 1, 3333, 2, 3, 5555, 4, 5, 7777, 6, 7, 9999, 9, 0, 2222, 1, 2, 4444, 3, 4, 6666, 5, 6, 8888, 7, 9, 11
Offset: 1

Author

Satoshi Hashiba (fantasia_sato205(AT)kcc.zaq.ne.jp), Mar 10 2006

Keywords

Comments

You can generate very interesting sequences by using periodic numbers and the square root.

Crossrefs

Programs

  • Mathematica
    Sqrt[991199991199991199991199991199991199991199991199991199]

Formula

You can get this sequence by Sqrt[991199991199991199991199991199991199991199991199991199], where Sqrt is the square root. Or (991199991199991199991199991199991199991199991199991199)/9.

A100539 Number of reduced Latin 4-dimensional hypercubes (Latin polyhedra) of order n.

Original entry on oeis.org

1, 1, 1, 7132, 31503556
Offset: 1

Author

Toru Ito (t_ito(AT)mue.biglobe.ne.jp), Nov 28 2004

Keywords

Comments

Latin 4-dimensional hypercubes (Latin polyhedra) are a generalization of Latin cube and Latin square.

References

  • T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese).

Crossrefs

Extensions

a(5) from Ian Wanless, May 01 2008
Edited by N. J. A. Sloane, Dec 06 2009 at the suggestion of Vladeta Jovovic

A100540 Total number of Latin 4-dimensional hypercubes (Latin polyhedra) of order n.

Original entry on oeis.org

1, 2, 48, 36972288, 52260618977280
Offset: 1

Author

Toru Ito (t_ito(AT)mue.biglobe.ne.jp), Nov 28 2004

Keywords

References

  • T. Ito, Method, equipment,program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (in Japanese).

Crossrefs

A row of the array in A249026.

Extensions

a(5) from Ian Wanless, May 01 2008
Edited by N. J. A. Sloane, Dec 05 2009 at the suggestion of Vladeta Jovovic

A098843 Number of reduced Latin cubes of order n.

Original entry on oeis.org

1, 1, 1, 64, 40246, 95909896152
Offset: 1

Author

N. J. A. Sloane, based on correspondence from Toru Ito (t_ito(AT)mue.biglobe.ne.jp), Nov 03 2004

Keywords

Comments

There are at least two ways to define Latin cubes - see the Preece et al. paper. - Rosemary Bailey, Nov 03 2004

References

  • T. Ito, Method for producing Latin squares, Publication number JP2000-28510A, Japan Patent Office.
  • T. Ito, Method for producing Latin squares, JP3394467B, Patent abstracts of Japan,Japan Patent Office.
  • Jia, Xiong Wei and Qin, Zhong Ping, The number of Latin cubes and their isotopy classes, J. Huazhong Univ. Sci. Tech. 27 (1999), no. 11, 104-106. MathSciNet #MR1751724.

Crossrefs

Cf. A098846 (isomorphism classes), A098679 (total number), A099321 (isotopy classes).

Extensions

a(6) computed independently by Brendan McKay and Ian Wanless, Dec 17 2004

A098679 Total number of Latin cubes of order n.

Original entry on oeis.org

1, 2, 24, 55296, 2781803520, 994393803303936000
Offset: 1

Author

N. J. A. Sloane, based on correspondence from Toru Ito (t_ito(AT)mue.biglobe.ne.jp), Nov 06 2004

Keywords

Comments

There are at least two ways to define Latin cubes - see the Preece et al. paper. - Rosemary Bailey, Nov 03 2004

References

  • T. Ito, Method for producing Latin squares, Publication number JP2000-28510A, Japan Patent Office.
  • T. Ito, Method for producing Latin squares, JP3394467B, Patent abstracts of Japan, Japan Patent Office.
  • Jia, Xiong Wei and Qin, Zhong Ping, The number of Latin cubes and their isotopy classes, J. Huazhong Univ. Sci. Tech. 27 (1999), no. 11, 104-106. MathSciNet #MR1751724.

Crossrefs

Cf. A098843, A098846, A099321; A002860 (Latin squares).
A row of the array in A249026.

Formula

a(n) = n!*(n-1)!*(n-1)!*A098843(n).

Extensions

a(6) computed independently by Brendan McKay and Ian Wanless, Dec 17 2004

A092297 Number of ways of 3-coloring an annulus consisting of n zones joined like a pearl necklace.

Original entry on oeis.org

0, 6, 6, 18, 30, 66, 126, 258, 510, 1026, 2046, 4098, 8190, 16386, 32766, 65538, 131070, 262146, 524286, 1048578, 2097150, 4194306, 8388606, 16777218, 33554430, 67108866, 134217726, 268435458, 536870910, 1073741826, 2147483646
Offset: 1

Author

S. B. Step (stepy(AT)vesta.ocn.ne.jp), Feb 06 2004

Keywords

Comments

A circular domain means a domain between two concentric circles and it is divided into n parts by n boundary lines perpendicular to the circles. Both sides of a line must have different colors. How many ways of coloring are there?
a(n) is also the multiple of six that's nearest to 2^n. - David Eppstein, Aug 31 2010
a(n) apparently is the trace of the n-th power of the adjacency matrix of the complete 3-graph, a 3 X 3 matrix with diagonal elements all zero and off-diagonal all ones (cf. A001045). If so, a(n) is the number of closed walks on the graph of length n. - Tom Copeland, Nov 06 2012
For n >= 2, a(n) is the number of length n words on 3 letters with no two consecutive like letters including the first and the last. Cf. A218034. - Geoffrey Critzer, Apr 05 2014

Examples

			a(2)=6 because we can color one zone in 3 colors and the other in 2, so 2*3=6 in all.
		

Crossrefs

Column k=3 of A106512.
Cf. A001045.

Programs

  • Magma
    [2^n+2*(-1)^n : n in [1..40]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    nn=28;Drop[CoefficientList[Series[6x^2/(1+x)^2/(1-3x/(1+x)),{x,0,nn}],x],1] (* Geoffrey Critzer, Apr 05 2014 *)
    a[ n_] := 2 (2^(n - 1) + (-1)^n); (* Michael Somos, Oct 25 2014 *)
    a[ n_] := If[ n < 1, -(-2)^(n - 1) a[2 - n] , (-1)^n HypergeometricPFQ[ Table[ -2, {k, n}], Table[ 1, {k, n - 1}], 1]] (* Michael Somos, Oct 25 2014 *)
    LinearRecurrence[{1,2},{0,6},40] (* Harvey P. Dale, May 21 2024 *)
  • PARI
    {a(n) = 2 * (2^(n-1) - (-1)^n)}; /* Michael Somos, Oct 25 2014 */

Formula

a(n) = 2^n + 2*(-1)^n; recurrence a(1)=0, a(2)=6, a(n) = 2*a(n-2) + a(n-1).
O.g.f: -6*x^2/((1+x)*(2*x-1)) = -3 - 1/(2*x-1) + 2/(1+x). - R. J. Mathar, Dec 02 2007
a(n) = 6*A001045(n-1). - R. J. Mathar, Aug 30 2008
a(n) = (-1)^n * a(2-n) * 2^(n-1) for all n in Z. - Michael Somos, Oct 25 2014