cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A054977 a(0)=2, a(n)=1 for n >= 1.

Original entry on oeis.org

2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Henry Gould, May 29 2000

Keywords

Comments

Arises in Gilbreath-Proth conjecture; see A036262.
a(n) is also the continued fraction for (3+sqrt(5))/2. - Enrique Pérez Herrero, May 16 2010
a(n) is also the denominator for odd Bernoulli Numbers. - Enrique Pérez Herrero, Jul 17 2010
a(n) = 3 - A040000(n); a(n) = A182579(n+1,1). - Reinhard Zumkeller, May 07 2012
From Paul Curtz, Feb 04 2014: (Start)
Difference table of a(n):
2, 1, 1, 1, 1, 1, 1, ...
-1, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, ...
-1, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, ...
-1, 0, 0, 0, 0, 0, 0, ... .
a(n) is an autosequence of second kind. Its inverse binomial transform is the signed sequence with the main diagonal (here A000038) double of the following diagonal (here A000007). Here the other diagonals are also A000007.
b(n) = A000032(n) - a(n) = 0, 0, 2, 3, 6, 10, 17, 28, ... = 0, followed by A001610(n) is the autosequence of second kind preceding A000032(n).
The corresponding autosequence of first kind, 0 followed by 1's, is A057427(n).
The Akiyama-Tanigawa transform applied to a(n) yields a(n).
(End)
Harmonic or factorial (base) expansion of e, cf. MathWorld link. - M. F. Hasler, Nov 25 2018
Decimal expansion of 19/90. - Elmo R. Oliveira, Aug 09 2024

Crossrefs

Programs

Formula

a(n) = A027642(2*n+1). - Enrique Pérez Herrero, Jul 17 2010
G.f.: (2-x)/(1-x). - Wolfdieter Lang, Oct 05 2014
Sum_{k>=1} a(n)/n! = exp(1). - G. C. Greubel, Nov 26 2018

A182797 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the k X k X k triangular grid.

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 24, 5, 0, 0, 6, 192, 60, 6, 0, 0, 6, 2112, 1620, 120, 7, 0, 0, 6, 32640, 98820, 7680, 210, 8, 0, 0, 6, 718080, 13638780, 1574400, 26250, 336, 9, 0, 0, 6, 22665216, 4260983940, 1034019840, 13676250, 72576, 504, 10
Offset: 1

Views

Author

Alois P. Heinz, Dec 02 2010

Keywords

Comments

The k X k X k triangular grid has k rows with i vertices in row i. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has A000217(k) vertices and 3*A000217(k-1) edges altogether.
The coefficients of the chromatic polynomials for the column sequences are given by the rows of A193283. - Georg Fischer, Jul 31 2023

Examples

			Square array A(n,k) begins:
  1,   0,    0,       0,          0,             0,  ...
  2,   0,    0,       0,          0,             0,  ...
  3,   6,    6,       6,          6,             6,  ...
  4,  24,  192,    2112,      32640,        718080,  ...
  5,  60, 1620,   98820,   13638780,    4260983940,  ...
  6, 120, 7680, 1574400, 1034019840, 2175789895680,  ...
		

Crossrefs

Rows n=1-10 give: A000007(k-1), A000038(k-1), A040006(k-1), A182798, A153467*4, A153468*5, A153469*6, A153470*7, A153471*8, A153472*9, A153473*10.

A212163 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the rhombic hexagonal square grid graph RH_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4034304, 30847500, 393600, 1050, 8, 0, 0, 6, 739642368, 148039757460, 3312560640, 2735250, 2016, 9
Offset: 1

Views

Author

Alois P. Heinz, May 02 2012

Keywords

Comments

The rhombic hexagonal square grid graph RH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212162 for example. The chromatic polynomial of RH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212195 first at (n,k) = (4,5): A(4,5) = 4034304, A212195(4,5) = 4038432.

Examples

			Square array A(n,k) begins:
  1,    0,       0,            0,                 0, ...
  2,    0,       0,            0,                 0, ...
  3,    6,       6,            6,                 6, ...
  4,   48,    1056,        45696,           4034304, ...
  5,  180,   32940,     30847500,      148039757460, ...
  6,  480,  393600,   3312560640,   286169360240640, ...
  7, 1050, 2735250, 123791435250, 97337270132408250, ...
		

Crossrefs

Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068246, 6*A068247.
Rows n=1-15 give: A000007, A000038, A040006, 4*A068271, 5*A068272, 6*A068273, 7*A068274, 8*A068275, 9*A068276, 10*A068277, 11*A068278, 12*A068279, 13*A068280, 14*A068281, 15*A068282.

A212209 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square diagonal grid graph DG_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 24, 5, 0, 0, 0, 72, 120, 6, 0, 0, 0, 168, 6720, 360, 7, 0, 0, 0, 360, 935040, 126360, 840, 8, 0, 0, 0, 744, 325061760, 265035240, 1128960, 1680, 9, 0, 0, 0, 1512, 283192323840, 3322711053720, 17160407040, 6510000, 3024, 10
Offset: 1

Views

Author

Alois P. Heinz, May 04 2012

Keywords

Comments

The square diagonal grid graph DG_(n,n) has n^2 = A000290(n) vertices and 2*(n-1)*(2*n-1) = A002943(n-1) edges; see A212208 for example. The chromatic polynomial of DG_(n,n) has n^2+1 = A002522(n) coefficients.
This graph is also called the king graph. - Andrew Howroyd, Jun 25 2017

Examples

			Square array A(n,k) begins:
  1,   0,       0,           0,                0, ...
  2,   0,       0,           0,                0, ...
  3,   0,       0,           0,                0, ...
  4,  24,      72,         168,              360, ...
  5, 120,    6720,      935040,        325061760, ...
  6, 360,  126360,   265035240,    3322711053720, ...
  7, 840, 1128960, 17160407040, 2949948395735040, ...
		

Crossrefs

Columns 1-5 give: A000027, A052762 = 24*A000332, 24*A068250, 24*A068251, 24*A068252.
Rows n=1-16 give: A000007, A000038, 3*A000007, 4*A068293, 5*A068294, 6*A068295, 7*A068296, 8*A068297, 9*A068298, 10*A068299, 11*A068300, 12*A068301, 13*A068302, 14*A068303, 15*A068304, 16*A068305.

A212195 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the staggered hexagonal square grid graph SH_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4038432, 30847500, 393600, 1050, 8, 0, 0, 6, 743601024, 148046704020, 3312560640, 2735250, 2016, 9
Offset: 1

Views

Author

Alois P. Heinz, May 03 2012

Keywords

Comments

The staggered hexagonal square grid graph SH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212194 for example. The chromatic polynomial of SH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212163 first at (n,k) = (4,5): A(4,5) = 4038432, A212163(4,5) = 4034304.

Examples

			Square array A(n,k) begins:
  1,    0,       0,            0,                 0, ...
  2,    0,       0,            0,                 0, ...
  3,    6,       6,            6,                 6, ...
  4,   48,    1056,        45696,           4038432, ...
  5,  180,   32940,     30847500,      148046704020, ...
  6,  480,  393600,   3312560640,   286170443437440, ...
  7, 1050, 2735250, 123791435250, 97337320223288250, ...
		

Crossrefs

Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068248, 6*A068249.
Rows n=1-10, 16-18 give: A000007, A000038, A040006, 4*A068283, 5*A068284, 6*A068285, 7*A068286, 8*A068287, 9*A068288, 10*A068289, 16*A068290, 17*A068291, 18*A068292.

A130123 Infinite lower triangular matrix with 2^k in the right diagonal and the rest zeros. Triangle, T(n,k), n zeros followed by the term 2^k. Triangle by columns, (2^k, 0, 0, 0, ...).

Original entry on oeis.org

1, 0, 2, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 512, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2048, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4096
Offset: 0

Views

Author

Gary W. Adamson, May 11 2007

Keywords

Comments

A 2^n transform matrix.
Triangle T(n,k), 0 <= k <= n, given by [0,0,0,0,0,0,...] DELTA [2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 26 2007
Also the Bell transform of A000038. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
T is the convolution triangle of the characteristic function of 2 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			First few terms of the triangle:
  1;
  0, 2;
  0, 0, 4;
  0, 0, 0, 8;
  0, 0, 0, 0, 16;
  0, 0, 0, 0,  0, 32; ...
		

Crossrefs

Programs

  • Magma
    [[k eq n select 2^n else 0: k in [0..n]]: n in [0..14]]; // G. C. Greubel, Jun 05 2019
    
  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n=0,2,0), 9); # Peter Luschny, Jan 27 2016
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> ifelse(n=1, 2, 0)); # Peter Luschny, Oct 19 2022
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[# == 0, 2, 0]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
    Table[If[k==n, 2^n, 0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
  • PARI
    {T(n,k) = if(k==n, 2^n, 0)}; \\ G. C. Greubel, Jun 05 2019
    
  • Sage
    def T(n, k):
        if (k==n): return 2^n
        else: return 0
    [[T(n, k) for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jun 05 2019

Formula

G.f.: 1/(1-2*x*y). - R. J. Mathar, Aug 11 2015

A244645 Decimal expansion of the sum of the reciprocals of the octagonal numbers (A000567).

Original entry on oeis.org

1, 2, 7, 7, 4, 0, 9, 0, 5, 7, 5, 5, 9, 6, 3, 6, 7, 3, 1, 1, 9, 4, 9, 5, 3, 4, 9, 2, 1, 0, 2, 4, 3, 3, 2, 1, 1, 5, 5, 6, 6, 3, 4, 4, 8, 0, 3, 9, 0, 2, 4, 7, 2, 3, 2, 6, 9, 3, 4, 9, 1, 9, 8, 4, 0, 7, 5, 1, 5, 1, 5, 1, 5, 1, 9, 5, 5, 4, 5, 1, 9, 6, 0, 7, 6, 2, 4, 3, 0, 6, 3, 1, 6, 3, 3, 1, 4, 1, 0, 8, 8, 0, 5, 0, 3
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.2774090575596367311949534921024332115566344803902472326934919840751515151955452...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[1/(3n^2 - 2n), {n, 1 , Infinity}], 10, 111][[1]]
  • PARI
    sumpos(n=1, 1/(3*n^2 - 2*n)) \\ Michel Marcus, Sep 12 2016
    
  • PARI
    sumnumrat(1/(3*n-2)/n,1) \\ Charles R Greathouse IV, Feb 08 2023

Formula

Equals Sum_{n>=1} 1/(3*n^2 - 2*n).
Equals Pi/(4*sqrt(3)) + 3*log(3)/4. - Vaclav Kotesovec, Jul 05 2014

A244646 Decimal expansion of the sum of the reciprocals of the 9-gonal (or enneagonal or nonagonal) numbers (A001106).

Original entry on oeis.org

1, 2, 4, 3, 3, 2, 0, 9, 2, 6, 1, 5, 3, 7, 1, 2, 9, 8, 9, 2, 0, 6, 6, 0, 7, 7, 3, 9, 6, 3, 1, 0, 1, 4, 2, 8, 2, 1, 3, 5, 8, 4, 4, 1, 0, 1, 0, 3, 0, 0, 9, 9, 6, 2, 4, 4, 1, 5, 2, 8, 1, 7, 5, 2, 5, 3, 8, 6, 6, 0, 7, 4, 3, 8, 4, 4, 0, 8, 5, 1, 9, 7, 8, 6, 9, 0, 0, 1, 3, 2, 3, 2, 5, 8, 8, 3, 2, 8, 6, 0, 0, 7, 3, 6, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.2433209261537129892066077396310142821358441010300996244152817525...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[2/(7n^2 - 5n), {n, 1 , Infinity}], 10, 111][[1]]

Formula

Equals Sum_{n>=1} 2/(7n^2 - 5n).
Equals (2*log(14) + 4*(cos(Pi/7)*log(cos(3*Pi/14)) + log(sin(Pi/7))*sin(Pi/14) - log(cos(Pi/14)) * sin(3*Pi/14)) + Pi*tan(3*Pi/14))/5. - Vaclav Kotesovec, Jul 04 2014
Equals 14/25 - (2/5)*(gamma + psi(-5/7)), where gamma is Euler's constant (A001620) and psi(x) is the digamma function (Agarwal, 2021), psi(-5/7) = psi(2/7)+7/5 = -2.285517..., see A354628. - Amiram Eldar, Nov 12 2021

A244647 Decimal expansion of the sum of the reciprocals of the decagonal numbers (A001107).

Original entry on oeis.org

1, 2, 1, 6, 7, 4, 5, 9, 5, 6, 1, 5, 8, 2, 4, 4, 1, 8, 2, 4, 9, 4, 3, 3, 9, 3, 5, 2, 0, 0, 4, 7, 6, 0, 3, 8, 2, 1, 0, 8, 3, 6, 1, 7, 0, 0, 9, 2, 2, 7, 7, 2, 8, 9, 0, 9, 4, 9, 8, 3, 7, 4, 4, 1, 5, 4, 4, 6, 9, 6, 3, 5, 6, 3, 5, 0, 7, 2, 9, 5, 4, 8, 7, 1, 0, 5, 3, 5, 7, 9, 7, 8, 8, 6, 7, 7, 1, 5, 3, 2, 2, 0, 5, 6, 9
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Comments

For the partial sums of the reciprocals of the (positive) decagonal numbers see A250551(n+1)/A294515(n), n >= 0. - Wolfdieter Lang, Nov 07 2017

Examples

			1.216745956158244182494339352004760382108361700922772890949837441544696356350....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Log[2] + Pi/6, 10, 111][[1]] (* or *)
    RealDigits[ Sum[1/(4n^2 - 3n), {n, 1 , Infinity}], 10, 111][[1]]
  • PARI
    log(2)+Pi/6 \\ Charles R Greathouse IV, Feb 08 2023

Formula

Sum_{n>0} 1/(4n^2 - 3n) = log(2) + Pi/6, (A002162 + A019673).

A244649 Decimal expansion of the sum of the reciprocals of the Dodecagonal numbers (A051624).

Original entry on oeis.org

1, 1, 7, 7, 9, 5, 6, 0, 5, 7, 9, 2, 2, 6, 6, 3, 8, 5, 8, 7, 3, 5, 1, 7, 3, 9, 6, 8, 0, 9, 1, 8, 8, 7, 4, 1, 8, 4, 4, 5, 8, 5, 7, 2, 3, 4, 5, 6, 6, 6, 7, 9, 8, 0, 2, 8, 4, 2, 5, 2, 2, 8, 5, 7, 3, 2, 6, 6, 8, 9, 2, 5, 6, 8, 2, 8, 4, 8, 8, 7, 4, 5, 4, 0, 2, 4, 0, 7, 6, 9, 0, 2, 5, 6, 9, 5, 5, 9, 0, 3, 2, 2, 4, 4, 4
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Comments

From Wolfdieter Lang, Nov 09 2017: (Start)
In the Downey et al. link this is the instance k = 5 of the formula given there for S_{2*k+2}. A simpler formula is given in the Koecher reference as (5/4)*v_5(1) on p. 192. See the Kotesovec formula given below.
The partial sums are given in A294520/A294521. (End)

Examples

			1.1779560579226638587351739680918874184458572345666798028425228573...
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[1/(5n^2 - 4n), {n, 1 , Infinity}], 10, 111][[1]]

Formula

Equals Sum_{n>=1} 1/(5n^2 - 4n).
Equals Pi/8*sqrt(1+2/sqrt(5)) + (5*log(5) + sqrt(5)*log((3+sqrt(5))/2))/16. - Vaclav Kotesovec, Jul 04 2014
This is the value given in the Koecher reference (see a comment above), and rewritten with the golden section phi = (1 + sqrt(5))/2 this becomes
((5/2)*log(5) + (2*phi - 1)*(log(phi) + (Pi/5)*sqrt(3 + 4*phi)))/8. - Wolfdieter Lang, Nov 09 2017
Showing 1-10 of 25 results. Next