A000073 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 3 with a(0) = a(1) = 0 and a(2) = 1.
0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012, 121415, 223317, 410744, 755476, 1389537, 2555757, 4700770, 8646064, 15902591, 29249425, 53798080, 98950096, 181997601, 334745777, 615693474, 1132436852
Offset: 0
Examples
G.f. = x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 13*x^7 + 24*x^8 + 44*x^9 + 81*x^10 + ...
References
- M. Agronomof, Sur une suite récurrente, Mathesis (Series 4), Vol. 4 (1914), pp. 125-126.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
- Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
- J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Simone Sandri, Table of n, a(n) for n = 0..3000 (first 200 terms from T. D. Noe)
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", arXiv:1409.6454 [math.NT], 2014; Discrete Math. 335 (2014), 1-7. MR3248794
- Abdullah Açikel, Amrouche Said, Hacene Belbachir, and Nurettin Irmak, On k-generalized Lucas sequence with its triangle, Turkish J. Math. (2023) Vol. 47, No. 4, Art. 6, 1129-1143. See p. 1130.
- Kunle Adegoke, Adenike Olatinwo, and Winning Oyekanmi, New Tribonacci Recurrence Relations and Addition Formulas, arXiv:1811.03663 [math.CO], 2018.
- Adel Alahmadi and Florian Luca, On Tribonacci Numbers that are Products of Factorials, J. Int. Seq., Vol. 26 (2023), Article 23.2.2.
- Said Amrouche and Hacène Belbachir, Unimodality and linear recurrences associated with rays in the Delannoy triangle, Turkish Journal of Mathematics (2019) Vol. 44, 118-130.
- Pornpawee Anantakitpaisal and Kantaphon Kuhapatanakul, Reciprocal Sums of the Tribonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), #16.2.1.
- George E. Andrews, Matthew Just, and Greg Simay, Anti-palindromic compositions, arXiv:2102.01613 [math.CO], 2021. Also Fib. Q., 60:2 (2022), 164-176.
- Kassie Archer and Noel Bourne, Pattern avoidance in compositions and powers of permutations, arXiv:2505.05218 [math.CO], 2025. See pp. 2, 6.
- Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023. See p. 15.
- Joerg Arndt, Matters Computational (The Fxtbook), pp.307-309.
- J. L. Arocha and B. Llano, The number of dominating k-sets of paths, cycles and wheels, arXiv:1601.01268 [math.CO], 2016.
- Christos Athanasiadis, Jesús De Loera, and Zhenyang Zhang, Enumerative problems for arborescences and monotone paths on polytopes, arXiv:2002.00999 [math.CO], 2020.
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No. 1 (April 2010), 119-135.
- Elena Barcucci, Antonio Bernini, Stefano Bilotta, and Renzo Pinzani, Non-overlapping matrices, arXiv:1601.07723 [cs.DM], 2016.
- Erik Bates, Blan Morrison, Mason Rogers, Arianna Serafini, and Anav Sood, A new combinatorial interpretation of partial sums of m-step Fibonacci numbers, arXiv:2503.11055 [math.CO], 2025. See p. 2.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Linear recurrence sequences and their convolutions via Bell polynomials, arXiv:1405.7727 [math.CO], 2014.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv:1505.06339 [math.NT], 2015.
- Eric Fernando Bravo, On concatenations of Padovan and Perrin numbers, Math. Commun. (2023) Vol 28, 105-119.
- David Broadhurst, Multiple Landen values and the tribonacci numbers, arXiv:1504.05303 [hep-th], 2015.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Fibonacci representations of higher order, Fib. Quart., 10 (1972), 43-69.
- Nataliya Chekhova, Pascal Hubert, and Ali Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, Journal de théorie des nombres de Bordeaux, 13(2) (2001), 371-394.
- Fan R. K. Chung, Persi Diaconis, and Ron Graham, Permanental generating functions and sequential importance sampling, Stanford University (2018).
- Curtis Cooper, S. Miller, P. Moses, M. Sahin, et al., On Identities Of Ruggles, Horadam, Howard, and Young, Preprint, 2016; Proceedings of the 17th International Conference on Fibonacci Numbers and Their Applications, Université de Caen-Normandie, Caen, France, June 26 to July 2, 2016.
- Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19(3) (2012), Paper 22, 21 pp., MR2967227.
- Mahadi Ddamulira, Tribonacci numbers that are concatenations of two repdigits, hal-02547159, Mathematics [math] / Number Theory [math.NT], 2020.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27(1) (2020), #P1.52.
- Ömür Deveci, Zafer Adıgüzel, and Taha Doğan, On the Generalized Fibonacci-circulant-Hurwitz numbers, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 1, 179-190.
- Gregory P. B. Dresden and Zhaohui Du, A Simplified Binet Formula for k-Generalized Fibonacci Numbers, J. Int. Seq. 17 (2014) # 14.4.7.
- Mohamed S. El Naschie, Statistical geometry of a Cantor discretum and semiconductors, Computers & Mathematics with Applications, Vol. 29 (Issue 12, June 1995), 103-110.
- Nathaniel D. Emerson, A Family of Meta-Fibonacci Sequences Defined by Variable-Order Recursions, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.8.
- Christian Ennis, William Holland, Omer Mujawar, Aadit Narayanan, Frank Neubrander, Marie Neubrander, and Christina Simino, Words in Random Binary Sequences I, arXiv:2107.01029 [math.GM], 2021.
- Tim Evink and Paul Alexander Helminck, Tribonacci numbers and primes of the form p=x^2+11y^2, arXiv:1801.04605 [math.NT], 2018.
- Vinicius Facó and D. Marques, Tribonacci Numbers and the Brocard-Ramanujan Equation, Journal of Integer Sequences, 19 (2016), #16.4.4.
- Mark Feinberg, Fibonacci-Tribonacci, Fib. Quart. 1(3) (1963), 71-74.
- Mark Feinberg, New slants, Fib. Quart. 2 (1964), 223-227.
- Robert Frontczak, Sums of Tribonacci and Tribonacci-Lucas Numbers, International Journal of Mathematical Analysis, 12(1) (2018), 19-24.
- Robert Frontczak, Convolutions for Generalized Tribonacci Numbers and Related Results, International Journal of Mathematical Analysis, 12(7) (2018), 307-324.
- Taras Goy and Mark Shattuck, Determinant identities for Toeplitz-Hessenberg matrices with tribonacci number entries, Transactions on Combinatorics 9(3) (2020), 89-109. See also arXiv:2003.10660, [math.CO], 2020.
- Hans-Christian Herbig, Pivotal condensation and chemical balancing, hal-04091017 [math] 2023.
- Michael D. Hirschhorn, Coupled third-order recurrences, Fib. Quart., 44 (2006), 26-31.
- F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231-243.
- Omar Khadir, László Németh, and László Szalay, Tiling of dominoes with ranked colors, Results in Math. (2024) Vol. 79, Art. No. 253. See p. 2.
- Bahar Kuloğlu and Engin Özkan, d-Tribonacci Polynomials and Their Matrix Representations, WSEAS Trans. Math. (2023) Vol. 22, 204-212.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 10
- Nurettin Irmak and László Szalay, Tribonacci Numbers Close to the Sum 2^a+3^b+5^c, Math. Scand. 118(1) (2016), 27-32.
- Milan Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5. - _N. J. A. Sloane_, Sep 16 2012
- Günter Köhler, Generating functions of Fibonacci-like sequences and decimal expansion of some fractions, The Fibonacci Quarterly 23(1) (1985), 29-35 [a(n+2) = T_n on p. 35].
- S. Kak, The Golden Mean and the Physics of Aesthetics, arXiv:physics/0411195 [physics.hist-ph], 2004.
- Tamara Kogan, L. Sapir, A. Sapir, and A. Sapir, The Fibonacci family of iterative processes for solving nonlinear equations, Applied Numerical Mathematics 110 (2016), 148-158.
- Takao Komatsu, Convolution identities for tribonacci-type numbers with arbitrary initial values, Palestine Journal of Mathematics, Vol. 8(2) (2019), 413-417.
- T. Komatsu and V. Laohakosol, On the Sum of Reciprocals of Numbers Satisfying a Recurrence Relation of Order s, J. Int. Seq. 13 (2010), #10.5.8.
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
- Pin-Yen Lin, De Moivre type identities for the Tribonacci numbers, The Fibonacci Quarterly, 26(2) (1988), 131-134.
- Steven Linton, James Propp, Tom Roby, and Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), #12.9.1.
- Sepideh Maleki and Martin Burtscher, Automatic Hierarchical Parallelization of Linear Recurrences, Proceedings of the 23rd International Conference on Architectural Support for Programming Languages and Operating Systems, ACM, 2018.
- T. Mansour, Permutations avoiding a set of patterns from S_3 and a pattern from S_4, arXiv:math/9909019 [math.CO], 1999.
- T. Mansour and M. Shattuck, Polynomials whose coefficients are generalized Tribonacci numbers, Applied Mathematics and Computation, Volume 219(15) (2013), 8366-8374.
- T. Mansour and M. Shattuck, A monotonicity property for generalized Fibonacci sequences, arXiv:1410.6943 [math.CO], 2014.
- O. Martin, A. M. Odlyzko and S. Wolfram, Algebraic properties of cellular automata, Comm. Math. Physics, 93 (1984), pp. 219-258, Reprinted in Theory and Applications of Cellular Automata, S. Wolfram, Ed., World Scientific, 1986, pp. 51-90 and in Cellular Automata and Complexity: Collected Papers of Stephen Wolfram, Addison-Wesley, 1994, pp. 71-113. See Eq. 5.5b.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, 8 (2005), Article 05.4.4.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- János Podani, Ádám Kun and András Szilágyi, How fast does Darwin’s elephant population grow?, Journal of the History of Biology, Vol. 51, No. 2 (2018), pp. 259-281.
- H. Prodinger, Counting Palindromes According to r-Runs of Ones Using Generating Functions, J. Int. Seq. 17 (2014) # 14.6.2, odd length middle 0 with r=2.
- L. Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. - From _N. J. A. Sloane_, Jan 03 2013
- J. L. Ramirez and V. F. Sirvent, Incomplete Tribonacci Numbers and Polynomials, Journal of Integer Sequences, 17 (2014), #14.4.2.
- J. L. Ramírez and V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38.
- Michel Rigo, Relations on words, arXiv:1602.03364 [cs.FL], 2016.
- Raphael Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.
- Jeffrey Shallit, Some Tribonacci conjectures, arXiv:2210.03996 [math.CO], 2022.
- A. G. Shannon, Tribonacci numbers and Pascal's pyramid, part b, Fibonacci Quart. 15(3) (1977), 268-275.
- M. Shattuck, Combinatorial identities for incomplete tribonacci polynomials, arXiv:1406.2755 [math.CO], 2014.
- W. R. Spickerman, Binet's formula for the tribonacci sequence, The Fibonacci Quarterly 20(2) (1982), 118-120.
- H. J. H. Tuenter, In Search of Comrade Agronomof: Some Tribonacci History, The American Mathematical Monthly, 130(8):708-719, October 2023.
- M. E. Waddill and L. Sacks, Another generalized Fibonacci sequence, Fib. Quart., 5 (1967), 209-222.
- Hsin-Po Wang and Chi-Wei Chin, On Counting Subsequences and Higher-Order Fibonacci Numbers, arXiv:2405.17499 [cs.IT], 2024. See p. 2.
- Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020).
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
- Eric Weisstein's World of Mathematics, Tribonacci Number.
- Wikipedia, Generalizations of Fibonacci numbers.
- Ce Xu and Jianqiang Zhao, Alternating Multiple T-Values: Weighted Sums, Duality, and Dimension Conjecture, arXiv:2009.10774 [math.NT], 2020.
- Shujie Zhou and Li Chen, Tribonacci Numbers and Some Related Interesting Identities, Symmetry, 11(10) (2019), 1195.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
Crossrefs
Cf. A000045, A000078, A000213, A000931, A001590 (first differences, also a(n)+a(n+1)), A001644, A008288 (tribonacci triangle), A008937 (partial sums), A021913, A027024, A027083, A027084, A046738 (Pisano periods), A050231, A054668, A062544, A063401, A077902, A081172, A089068, A118390, A145027, A153462, A230216.
Programs
-
GAP
a:=[0,0,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Oct 24 2018
-
Haskell
a000073 n = a000073_list !! n a000073_list = 0 : 0 : 1 : zipWith (+) a000073_list (tail (zipWith (+) a000073_list $ tail a000073_list)) -- Reinhard Zumkeller, Dec 12 2011
-
Magma
[n le 3 select Floor(n/3) else Self(n-1)+Self(n-2)+Self(n-3): n in [1..70]]; // Vincenzo Librandi, Jan 29 2016
-
Maple
a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1,3]: seq(a(n), n=0..40); # Alois P. Heinz, Dec 19 2016 # second Maple program: A000073:=proc(n) option remember; if n <= 1 then 0 elif n=2 then 1 else procname(n-1)+procname(n-2)+procname(n-3); fi; end; # N. J. A. Sloane, Aug 06 2018
-
Mathematica
CoefficientList[Series[x^2/(1 - x - x^2 - x^3), {x, 0, 50}], x] a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; Array[a, 36, 0] (* Robert G. Wilson v, Nov 07 2010 *) LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, May 24 2011 *) a[n_] := SeriesCoefficient[If[ n < 0, x/(1 + x + x^2 - x^3), x^2/(1 - x - x^2 - x^3)], {x, 0, Abs @ n}] (* Michael Somos, Jun 01 2013 *) Table[-RootSum[-1 - # - #^2 + #^3 &, -#^n - 9 #^(n + 1) + 4 #^(n + 2) &]/22, {n, 0, 20}] (* Eric W. Weisstein, Nov 09 2017 *)
-
Maxima
A000073[0]:0$ A000073[1]:0$ A000073[2]:1$ A000073[n]:=A000073[n-1]+A000073[n-2]+A000073[n-3]$ makelist(A000073[n], n, 0, 40); /* Emanuele Munarini, Mar 01 2011 */
-
PARI
{a(n) = polcoeff( if( n<0, x / ( 1 + x + x^2 - x^3), x^2 / ( 1 - x - x^2 - x^3) ) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, Sep 03 2007 */
-
PARI
my(x='x+O('x^99)); concat([0, 0], Vec(x^2/(1-x-x^2-x^3))) \\ Altug Alkan, Apr 04 2016
-
PARI
a(n)=([0,1,0;0,0,1;1,1,1]^n)[1,3] \\ Charles R Greathouse IV, Apr 18 2016, simplified by M. F. Hasler, Apr 18 2018
-
Python
def a(n, adict={0:0, 1:0, 2:1}): if n in adict: return adict[n] adict[n]=a(n-1)+a(n-2)+a(n-3) return adict[n] # David Nacin, Mar 07 2012 from functools import cache @cache def A000073(n: int) -> int: if n <= 1: return 0 if n == 2: return 1 return A000073(n-1) + A000073(n-2) + A000073(n-3) # Peter Luschny, Nov 21 2022
Formula
G.f.: x^2/(1 - x - x^2 - x^3).
G.f.: x^2 / (1 - x / (1 - x / (1 + x^2 / (1 + x)))). - Michael Somos, May 12 2012
G.f.: Sum_{n >= 0} x^(n+2) *[ Product_{k = 1..n} (k + k*x + x^2)/(1 + k*x + k*x^2) ] = x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 13*x^7 + ... may be proved by the method of telescoping sums. - Peter Bala, Jan 04 2015
a(n) = central term in M^n * [1 0 0] where M = the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 1 1]. (M^n * [1 0 0] = [a(n-1) a(n) a(n+1)].) a(n)/a(n-1) tends to the tribonacci constant, 1.839286755... = A058265, an eigenvalue of M and a root of x^3 - x^2 - x - 1 = 0. - Gary W. Adamson, Dec 17 2004
a(n+2) = Sum_{k=0..n} T(n-k, k), where T(n, k) = trinomial coefficients (A027907). - Paul Barry, Feb 15 2005
A001590(n) = a(n+1) - a(n); A001590(n) = a(n-1) + a(n-2) for n > 1; a(n) = (A000213(n+1) - A000213(n))/2; A000213(n-1) = a(n+2) - a(n) for n > 0. - Reinhard Zumkeller, May 22 2006
Let C = the tribonacci constant, 1.83928675...; then C^n = a(n)*(1/C) + a(n+1)*(1/C + 1/C^2) + a(n+2)*(1/C + 1/C^2 + 1/C^3). Example: C^4 = 11.444...= 2*(1/C) + 4*(1/C + 1/C^2) + 7*(1/C + 1/C^2 + 1/C^3). - Gary W. Adamson, Nov 05 2006
a(n) = j*C^n + k*r1^n + L*r2^n where C is the tribonacci constant (C = 1.8392867552...), real root of x^3-x^2-x-1=0, and r1 and r2 are the two other roots (which are complex), r1 = m+p*i and r2 = m-p*i, where i = sqrt(-1), m = (1-C)/2 (m = -0.4196433776...) and p = ((3*C-5)*(C+1)/4)^(1/2) = 0.6062907292..., and where j = 1/((C-m)^2 + p^2) = 0.1828035330..., k = a+b*i, and L = a-b*i, where a = -j/2 = -0.0914017665... and b = (C-m)/(2*p*((C-m)^2 + p^2)) = 0.3405465308... . - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n+1) = 3*c*((1/3)*(a+b+1))^n/(c^2-2*c+4) where a=(19+3*sqrt(33))^(1/3), b=(19-3*sqrt(33))^(1/3), c=(586+102*sqrt(33))^(1/3). Round to the nearest integer. - Al Hakanson (hawkuu(AT)gmail.com), Feb 02 2009
a(n) = round(3*((a+b+1)/3)^n/(a^2+b^2+4)) where a=(19+3*sqrt(33))^(1/3), b=(19-3*sqrt(33))^(1/3).. - Anton Nikonov
Another form of the g.f.: f(z) = (z^2-z^3)/(1-2*z+z^4). Then we obtain a(n) as a sum: a(n) = Sum_{i=0..floor((n-2)/4)} ((-1)^i*binomial(n-2-3*i,i)*2^(n-2-4*i)) - Sum_{i=0..floor((n-3)/4)} ((-1)^i*binomial(n-3-3*i,i)*2^(n-3-4*i)) with natural convention: Sum_{i=m..n} alpha(i) = 0 for m > n. - Richard Choulet, Feb 22 2010
a(n+2) = Sum_{k=0..n} Sum_{i=k..n, mod(4*k-i,3)=0} binomial(k,(4*k-i)/3)*(-1)^((i-k)/3)*binomial(n-i+k-1,k-1). - Vladimir Kruchinin, Aug 18 2010
a(n) = 2*a(n-2) + 2*a(n-3) + a(n-4). - Gary Detlefs, Sep 13 2010
a(n) = 2*a(n-1) - a(n-4), with a(0)=a(1)=0, a(2)=a(3)=1. - Vincenzo Librandi, Dec 20 2010
Starting (1, 2, 4, 7, ...) is the INVERT transform of (1, 1, 1, 0, 0, 0, ...). - Gary W. Adamson, May 13 2013
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x + x^2)/( x*(4*k+3 + x + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013
a(n+2) = Sum_{j=0..floor(n/2)} Sum_{k=0..j} binomial(n-2*j,k)*binomial(j,k)*2^k. - Tony Foster III, Sep 08 2017
Sum_{k=0..n} (n-k)*a(k) = (a(n+2) + a(n+1) - n - 1)/2. See A062544. - Yichen Wang, Aug 20 2020
From Yichen Wang, Aug 27 2020: (Start)
Sum_{k=0..n} a(k) = (a(n+2) + a(n) - 1)/2. See A008937.
Sum_{k=0..n} k*a(k) = ((n-1)*a(n+2) - a(n+1) + n*a(n) + 1)/2. See A337282. (End)
For n > 1, a(n) = b(n) where b(1) = 1 and then b(n) = Sum_{k=1..n-1} b(n-k)*A000931(k+2). - J. Conrad, Nov 24 2022
Conjecture: the congruence a(n*p^(k+1)) + a(n*p^k) + a(n*p^(k-1)) == 0 (mod p^k) holds for positive integers k and n and for all the primes p listed in A106282. - Peter Bala, Dec 28 2022
Sum_{k=0..n} k^2*a(k) = ((n^2-4*n+6)*a(n+1) - (2*n^2-2*n+5)*a(n) + (n^2-2*n+3)*a(n-1) - 3)/2. - Prabha Sivaramannair, Feb 10 2024
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(3*r^2-2*r-1). - Fabian Pereyra, Nov 23 2024
Extensions
Minor edits by M. F. Hasler, Apr 18 2018
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
Comments