A000204 Lucas numbers (beginning with 1): L(n) = L(n-1) + L(n-2) with L(1) = 1, L(2) = 3.
1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803, 141422324
Offset: 1
Examples
G.f. = x + 3*x^2 + 4*x^3 + 7*x^4 + 11*x^5 + 18*x^6 + 29*x^7 + 47*x^8 + ...
References
- P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 69.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 46.
- Leonhard Euler, Introductio in analysin infinitorum (1748), sections 216 and 229.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 148.
- Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
- V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
- R. V. Jean, Mathematical Approach to Pattern and Form in Plant Growth, Wiley, 1984. See p. 5. - N. J. A. Sloane, Jun 08 2011
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..4780 (terms 1..500 computed by N. J. A. Sloane)
- Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.
- Arno Berger and Theodore P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.
- J. Brown and R. L. Duncan, Modulo one uniform distribution of the sequence of logarithms of certain recursive sequences, Fibonacci Quarterly 8 (1970) 482-486.
- Enrico Di Cera and Yong Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3
- Sergio Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
- Scott Garrabrant and Igor Pak, Counting with irrational tiles, arXiv:1407.8222 [math.CO], 2014.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Sarah H. Holliday and Takao Komatsu, On the Sum of Reciprocal Generalized Fibonacci Numbers, Integers. Volume 11, Issue 4, Pages 441-455.
- R. Jovanovic, First 70 Lucas numbers
- Blair Kelly, Factorizations of Lucas numbers
- Tanya Khovanova, Recursive Sequences
- Clark Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
- Ron Knott, The Lucas Numbers in Pascal's Triangle.
- Kantaphon Kuhapatanakul, On the Sums of Reciprocal Generalized Fibonacci Numbers, J. Int. Seq. 16 (2013) #13.7.1.
- D. H. Lehmer, On Stern's Diatomic Series, Amer. Math. Monthly 36(1) 1929, pp. 59-67. [Annotated and corrected scanned copy]
- Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
- Mathilde Noual, Dynamics in parallel of double Boolean automata circuits, arXiv:1011.3930 [cs.DM], 2010. - _N. J. A. Sloane_, Jul 07 2012
- Mathilde Noual, Dynamics of Circuits and Intersecting Circuits, in Language and Automata Theory and Applications, Lecture Notes in Computer Science, 2012, Volume 7183/2012, 433-444. - _N. J. A. Sloane_, Jul 07 2012
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012.
- José L. Ramírez and Gustavo N. Rubiano, Properties and Generalizations of the Fibonacci Word Fractal, The Mathematica Journal, Vol. 16 (2014).
- Mark A. Shattuck and Carl G. Wagner, Periodicity and Parity Theorems for a Statistic on r-Mino Arrangements, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.6.
- N. J. A. Sloane, Illustration of initial terms: the Lucas tree
- Zdzisław Skupień, Sums of Powered Characteristic Roots Count Distance-Independent Circular Sets, Discussiones Mathematicae Graph Theory. Volume 33, Issue 1, Pages 217-229, ISSN (Print) 2083-5892, DOI: 10.7151/dmgt.1658, April 2013.
- Eric Weisstein's World of Mathematics, Lucas Number
- Eric Weisstein's World of Mathematics, Lucas n-Step Number
- Richard J. Yanco, Letter and Email to N. J. A. Sloane, 1994
- Index entries for "core" sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
- Index entries for sequences related to Benford's law
Crossrefs
Programs
-
Haskell
a000204 n = a000204_list !! n a000204_list = 1 : 3 : zipWith (+) a000204_list (tail a000204_list) -- Reinhard Zumkeller, Dec 18 2011
-
Magma
[Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 17 2017
-
Maple
A000204 := proc(n) option remember; if n <=2 then 2*n-1; else procname(n-1)+procname(n-2); fi; end; with(combinat): A000204 := n->fibonacci(n+1)+fibonacci(n-1); # alternative Maple program: L:= n-> (<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1]: seq(L(n), n=1..50); # Alois P. Heinz, Jul 25 2008 # Alternative: a := n -> `if`(n=1, 1, `if`(n=2, 3, hypergeom([(1-n)/2, -n/2], [1-n], -4))): seq(simplify(a(n)), n=1..39); # Peter Luschny, Sep 03 2019
-
Mathematica
c = (1 + Sqrt[5])/2; Table[Expand[c^n + (1 - c)^n], {n, 30}] (* Artur Jasinski, Oct 05 2008 *) Table[LucasL[n, 1], {n, 36}] (* Zerinvary Lajos, Jul 09 2009 *) LinearRecurrence[{1, 1},{1, 3}, 50] (* Sture Sjöstedt, Nov 28 2011 *) lukeNum[n_] := If[n < 1, 0, LucasL[n]]; (* Michael Somos, May 18 2015 *) lukeNum[n_] := SeriesCoefficient[x D[Log[1 / (1 - x - x^2)], x], {x, 0, n}]; (* Michael Somos, May 18 2015 *)
-
PARI
A000204(n)=fibonacci(n+1)+fibonacci(n-1) \\ Michael B. Porter, Nov 05 2009
-
Python
from functools import cache @cache def a(n): return [1, 3][n-1] if n < 3 else a(n-1) + a(n-2) print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Nov 13 2022
-
Python
[(i:=-1)+(j:=2)] + [(j:=i+j)+(i:=j-i) for in range(100)] # _Jwalin Bhatt, Apr 02 2025
-
Sage
def A000204(): x, y = 1, 2 while true: yield x x, y = x + y, x a = A000204(); print([next(a) for i in range(39)]) # Peter Luschny, Dec 17 2015
-
Scala
def lucas(n: BigInt): BigInt = { val zero = BigInt(0) def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match { case `zero` => a case _ => fibTail(n - 1, b, a + b) } fibTail(n, 2, 1) } (1 to 50).map(lucas()) // _Alonso del Arte, Oct 20 2019
Formula
Expansion of x(1 + 2x)/(1 - x - x^2). - Simon Plouffe, dissertation 1992; multiplied by x. - R. J. Mathar, Nov 14 2007
For n > 1, L(n) = F(n + 2) - F(n - 2), where F(n) is the n-th Fibonacci number (A000045). - Gerald McGarvey, Jul 10 2004
a(n+1) = 4*A054886(n+3) - A022388(n) - 2*A022120(n+1) (a conjecture; note that the above sequences have different offsets). - Creighton Dement, Nov 27 2004
a(n) = Sum_{k=0..floor((n+1)/2)} (n+1)*binomial(n - k + 1, k)/(n - k + 1). - Paul Barry, Jan 30 2005
a(n) = 2*Fibonacci(n-1) + Fibonacci(n), n >= 1. - Zerinvary Lajos, Oct 05 2007
L(n) is the term (1, 1) in the 1 X 2 matrix [2, -1].[1, 1; 1, 0]^n. - Alois P. Heinz, Jul 25 2008
a(n) = phi^n + (1 - phi)^n = phi^n + (-phi)^(-n) = ((1 + sqrt(5))^n + (1 - sqrt(5))^n)/(2^n) where phi is the golden ratio (A001622). - Artur Jasinski, Oct 05 2008
a(n) = ((1 + sqrt(5))^n - (1 - sqrt(5))^n)/(2^n*sqrt(5)) + ((1 + sqrt(5))^(n - 1) - (1 - sqrt(5))^(n - 1))/(2^(n - 2)*sqrt(5)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009, Jan 14 2009
From Hieronymus Fischer, Oct 20 2010 (Start)
Continued fraction for n odd: [L(n); L(n), L(n), ...] = L(n) + fract(Fib(n) * phi).
Continued fraction for n even: [L(n); -L(n), L(n), -L(n), L(n), ...] = L(n) - 1 + fract(Fib(n)*phi). Also: [L(n) - 2; 1, L(n) - 2, 1, L(n) - 2, ...] = L(n) - 2 + fract(Fib(n)*phi). (End)
INVERT transform of (1, 2, -1, -2, 1, 2, ...). - Gary W. Adamson, Mar 07 2012
L(2n - 1) = floor(phi^(2n - 1)); L(2n) = ceiling(phi^(2n)). - Thomas Ordowski, Jun 15 2012
a(n) = hypergeom([(1 - n)/2, -n/2], [1 - n], -4) for n >= 3. - Peter Luschny, Sep 03 2019
E.g.f.: 2*(exp(x/2)*cosh(sqrt(5)*x/2) - 1). - Stefano Spezia, Jul 26 2022
Extensions
Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
Plouffe Maple line edited by N. J. A. Sloane, May 13 2008
Comments