cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A335693 A000904(n) - (-1)^n.

Original entry on oeis.org

0, 1, 2, 14, 82, 593, 4820, 43980, 444612, 4934721, 59661254, 780531034, 10987095718, 165586966817, 2660378564776, 45392022568024, 819716784789192, 15620010933562689, 313219935456042954, 6593238655510464742, 145364470356686267258, 3349976056859294611697
Offset: 0

Views

Author

N. J. A. Sloane, Jul 20 2020

Keywords

Comments

A000179(n) = a(n-2) - a(n-4) for n >= 2. For example A000179(6) = 80 = 82 - 2 = a(4) - a(2).

References

  • I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. See q_n.

Crossrefs

A000179 Ménage numbers: a(0) = 1, a(1) = -1, and for n >= 2, a(n) = number of permutations s of [0, ..., n-1] such that s(i) != i and s(i) != i+1 (mod n) for all i.

Original entry on oeis.org

1, -1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123
Offset: 0

Views

Author

Keywords

Comments

According to rook theory, John Riordan considered a(1) to be -1. - Vladimir Shevelev, Apr 02 2010
This is also the value that the formulas of Touchard and of Wyman and Moser give and is compatible with many recurrences. - William P. Orrick, Aug 31 2020
Or, for n >= 3, the number of 3 X n Latin rectangles the second row of which is full cycle with a fixed order of its elements, e.g., the cycle (x_2,x_3,...,x_n,x_1) with x_1 < x_2 < ... < x_n. - Vladimir Shevelev, Mar 22 2010
Muir (p. 112) gives essentially this recurrence (although without specifying any initial conditions). Compare A186638. - N. J. A. Sloane, Feb 24 2011
Sequence discovered by Touchard in 1934. - L. Edson Jeffery, Nov 13 2013
Although these are also known as Touchard numbers, the problem was formulated by Lucas in 1891, who gave the recurrence formula shown below. See Cerasoli et al., 1988. - Stanislav Sykora, Mar 14 2014
An equivalent problem was formulated by Tait; solutions to Tait's problem were given by Muir (1878) and Cayley (1878). - William P. Orrick, Aug 31 2020
From Vladimir Shevelev, Jun 25 2015: (Start)
According to the ménage problem, 2*n!*a(n) is the number of ways of seating n married couples at 2*n chairs around a circular table, men and women in alternate positions, so that no husband is next to his wife.
It is known [Riordan, ch. 7] that a(n) is the number of arrangements of n non-attacking rooks on the positions of the 1's in an n X n (0,1)-matrix A_n with 0's in positions (i,i), i = 1,...,n, (i,i+1), i = 1,...,n-1, and (n,1). This statement could be written as a(n) = per(A_n). For example, A_5 has the form
001*11
1*0011
11001* (1)
11*100
0111*0,
where 5 non-attacking rooks are denoted by {1*}.
We can indicate a one-to-one correspondence between arrangements of n non-attacking rooks on the 1's of a matrix A_n and arrangements of n married couples around a circular table by the rules of the ménage problem, after the ladies w_1, w_2, ..., w_n have taken the chairs numbered
2*n, 2, 4, ..., 2*n-2 (2)
respectively. Suppose we consider an arrangement of rooks: (1,j_1), (2,j_2), ..., (n,j_n). Then the men m_1, m_2, ..., m_n took chairs with numbers
2*j_i - 3 (mod 2*n), (3)
where the residues are chosen from the interval[1,2*n]. Indeed {j_i} is a permutation of 1,...,n. So {2*j_i-3}(mod 2*n) is a permutation of odd positive integers <= 2*n-1. Besides, the distance between m_i and w_i cannot be 1. Indeed, the equality |2*(j_i-i)-1| = 1 (mod 2*n) is possible if and only if either j_i=i or j_i=i+1 (mod n) that correspond to positions of 0's in matrix A_n.
For example, in the case of positions of {1*} in(1) we have j_1=3, j_2=1, j_3=5, j_4=2, j_5=4. So, by(2) and (3) the chairs 1,2,...,10 are taken by m_4, w_2, m_1, w_3, m_5, w_4, m_3, w_5, m_2, w_1, respectively. (End)
The first 20 terms of this sequence were calculated in 1891 by E. Lucas (see [Lucas, p. 495]). - Peter J. C. Moses, Jun 26 2015
From Ira M. Gessel, Nov 27 2018: (Start)
If we invert the formula
Sum_{ n>=0 } u_n z^n = ((1-z)/(1+z)) F(z/(1+z)^2)
that Don Knuth mentions (see link) (i.e., set x=z/(1+z)^2 and solve for z in terms of x), we get a formula for F(z) = Sum_{n >= 0} n! z^n as a sum with all positive coefficients of (almost) powers of the Catalan number generating function.
The exact formula is (5) of the Yiting Li article.
This article also gives a combinatorial proof of this formula (though it is not as simple as one might want). (End)

Examples

			a(2) = 0; nothing works. a(3) = 1; (201) works. a(4) = 2; (2301), (3012) work. a(5) = 13; (20413), (23401), (24013), (24103), (30412), (30421), (34012), (34021), (34102), (40123), (43012), (43021), (43102) work.
		

References

  • W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th Ed. Dover, p. 50.
  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Nicola Zanichelli Editore, Bologna 1988, Chapter 3, p. 78.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 185, mu(n).
  • Kaplansky, Irving and Riordan, John, The probleme des menages, Scripta Math. 12, (1946). 113-124. See u_n.
  • E. Lucas, Théorie des nombres, Paris, 1891, pp. 491-495.
  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 1, p 256.
  • T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, Sect. 132, p. 112. - N. J. A. Sloane, Feb 24 2011
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
  • V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat. (J. of the Akademy of Sciences of Russia) 4(1992), 91-110. - Vladimir Shevelev, Mar 22 2010
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff.
  • J. Touchard, Permutations discordant with two given permutations, Scripta Math., 19 (1953), 108-119.
  • J. H. van Lint, Combinatorial Theory Seminar, Eindhoven University of Technology, Springer Lecture Notes in Mathematics, Vol. 382, 1974. See page 10.

Crossrefs

Diagonal of A058087. Also a diagonal of A008305.
A000179, A102761, and A335700 are all essentially the same sequence but with different conventions for the initial terms a(0) and a(1). - N. J. A. Sloane, Aug 06 2020

Programs

  • Haskell
    import Data.List (zipWith5)
    a000179 n = a000179_list !! n
    a000179_list = 1 : -1 : 0 : 1 : zipWith5
       (\v w x y z -> (x * y + (v + 2) * z - w) `div` v) [2..] (cycle [4,-4])
       (drop 4 a067998_list) (drop 3 a000179_list) (drop 2 a000179_list)
    -- Reinhard Zumkeller, Aug 26 2013
    
  • Maple
    A000179:= n ->add ((-1)^k*(2*n)*binomial(2*n-k,k)*(n-k)!/(2*n-k), k=0..n); # for n >= 1
    U:= proc(n) local k; add( (2*n/(2*n-k))*binomial(2*n-k,k)*(n-k)!*(x-1)^k, k=0..n); end; W := proc(r,s) coeff( U(r),x,s ); end; A000179 := n->W(n,0); # valid for n >= 1
  • Mathematica
    a[n_] := 2*n*Sum[(-1)^k*Binomial[2*n - k, k]*(n - k)!/(2*n - k), {k, 0, n}]; a[0] = 1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 05 2012, from 2nd formula *)
  • PARI
    \\ 3 programs adapted to a(1) = -1 by Hugo Pfoertner, Aug 31 2020
    
  • PARI
    {a(n) = my(A); if( n, A = vector(n,i,i-2); for(k=4, n, A[k] = (k * (k - 2) * A[k-1] + k * A[k-2] - 4 * (-1)^k) / (k-2)); A[n], 1)};/* Michael Somos, Jan 22 2008 */
    
  • PARI
    a(n)=if(n>1, round(2*n*exp(-2)*besselk(n, 2)), 1-2*n) \\ Charles R Greathouse IV, Nov 03 2014
    
  • PARI
    {a(n) = my(A); if( n, A = vector(n,i,i-2); for(k=5, n, A[k] = k * A[k-1] + 2 * A[k-2] + (4-k) * A[k-3] - A[k-4]); A[n], 1)} /* Michael Somos, May 02 2018 */
    
  • Python
    from math import comb, factorial
    def A000179(n): return 1 if n == 0 else sum((-2*n if k & 1 else 2*n)*comb(m:=2*n-k,k)*factorial(n-k)//m for k in range(n+1)) # Chai Wah Wu, May 27 2022

Formula

a(n) = ((n^2-2*n)*a(n-1) + n*a(n-2) - 4*(-1)^n)/(n-2) for n >= 3.
a(n) = A059375(n)/(2*n!) for n >= 2.
a(n) = Sum_{k=0..n} (-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k) for n >= 1. - Touchard (1934)
G.f.: ((1-x)/(1+x))*Sum_{n>=0} n!*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 26 2007
a(2^k+2) == 0 (mod 2^k); for k >= 2, a(2^k) == 2(mod 2^k). - Vladimir Shevelev, Jan 14 2011
a(n) = round( 2*n*exp(-2)*BesselK(n,2) ) for n > 1. - Mark van Hoeij, Oct 25 2011
a(n) ~ (n/e)^n * sqrt(2*Pi*n)/e^2. - Charles R Greathouse IV, Jan 21 2016
0 = a(n)*(-a(n+2) +a(n+4)) +a(n+1)*(+a(n+1) +a(n+2) -3*a(n+3) -5*a(n+4) +a(n+5)) +a(n+2)*(+2*a(n+2) +3*a(n+3) -3*a(n+4)) +a(n+3)*(+2*a(n+3) +a(n+4) -a(n+5)) +a(n+4)*(+a(n+4)), for all n>1. If a(-2..1) = (0, -1, 2, -1) then also true for those values of n. - Michael Somos, Apr 29 2018
D-finite with recurrence: 0 = a(n) +n*a(n+1) -2*a(n+2) +(-n-4)*a(n+3) +a(n+4), for all n in Z where a(n) = a(-n) for all n in Z and a(0) = 2, a(1) = -1. - Michael Somos, May 02 2018
a(n) = Sum_{k=0..n} A213234(n,k) * A000023(n-2*k) = Sum_{k=0..n} (-1)^k * n/(n-k) * binomial(n-k, k) * (n-2*k)! Sum_{j=0..n-2*k} (-2)^j/j! for n >= 1. [Wyman and Moser (1958)]. - William P. Orrick, Jun 25 2020
a(k+4*p) - 2*a(k+2*p) + a(k) is divisible by p, for any k > 0 and any prime p. - Mark van Hoeij, Jan 11 2022

Extensions

More terms from James Sellers, May 02 2000
Additional comments from David W. Wilson, Feb 18 2003
a(1) changed to -1 at the suggestion of Don Knuth. - N. J. A. Sloane, Nov 26 2018

A000271 Sums of ménage numbers.

Original entry on oeis.org

1, 0, 0, 1, 3, 16, 96, 675, 5413, 48800, 488592, 5379333, 64595975, 840192288, 11767626752, 176574062535, 2825965531593, 48052401132800, 865108807357216, 16439727718351881, 328839946389605643, 6906458590966507696
Offset: 0

Views

Author

Keywords

Comments

Permanent of the (0,1)-matrix having (i,j)-th entry equal to 0 iff this is on the diagonal or the first upper-diagonal. - Simone Severini, Oct 14 2004
Equivalently, number of permutations p of {1,2,...,n} such that p(i)-i not in {0,1}. - Andrew Howroyd, Sep 19 2017
From Vladimir Shevelev, Jun 21 2015: (Start)
Let 2*n!*V(n)=A137886(n) be the number of ways of seating n married couples at 2*n chairs arranged side-by-side in a straight line, men and women in alternate positions, so that no husband is next to his wife.
It is known [Riordan, Ch. 8, Th. 1, t=0] that, if 2*n!*U(n) is a solution of an analogous problem at a circular table, then U(n) = V(n) - V(n-1), n>=3, where U(n) = A000179(n). Thus V(n) = Sum_{i=3,...,n} A000179(i), n>=1, and comparing the initial conditions, we conclude that a(n) = V(n), n>=1. This gives a combinatorial interpretation for 2*n!*a(n).
(End)

Examples

			G.f. = 1 + x^3 + 3*x^4 + 16*x^5 + 96*x^6 + 675*x^7 + 5413*x^8 + ...
		

References

  • W. Ahrens, Mathematische Unterhaltungen und Spiele. Teubner, Leipzig, Vol. 1, 3rd ed., 1921; Vol. 2, 2nd ed., 1918. See Vol. 2, p. 79.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff.

Crossrefs

Cf. A000179, A000904, A001883, A137886, A292574. A diagonal of A058057.

Programs

  • Magma
    [ &+[(-1)^(n-k)*Binomial(n+k, 2*k)*Factorial(k): k in [0..n]]: n in [0..21]]; // Bruno Berselli, Apr 11 2011
    
  • Maple
    V := proc(n) local k; add( binomial(2*n-k,k)*(n-k)!*(x-1)^k, k=0..n); end; W := proc(r,s) coeff( V(r),x,s ); end; A000271 := n->W(n-2,0);
  • Mathematica
    Table[Sum[(-1)^(n - k) k! Binomial[n + k, 2 k], {k, 0, n}], {n, 0, 22}] (* Jean-François Alcover, Apr 11 2011, after Paul Barry *)
    RecurrenceTable[{a[0] == 1, a[1] == a[2] == 0, a[n] == (n - 1) a[n - 2] + (n - 1) a[n - 1] +  a[n - 3]}, a, {n, 30}] (* Harvey P. Dale, Jun 01 2012 *)
    Table[(-1)^n HypergeometricPFQ[{1, -n, n + 1}, {1/2}, 1/4], {n, 20}] (* Michael Somos, May 28 2014 *)
  • PARI
    a(n) = if(n, round( 2*exp(-2)*(besselk(n+1,2) + besselk(n,2)) ), 1) \\ Charles R Greathouse IV, May 11 2016

Formula

a(n) = (n - 1) a(n - 2) + (n - 1) a(n - 1) + a(n - 3).
From Paul Barry, Feb 08 2009: (Start)
G.f.: 1/(1+x-x/(1+x-x/(1+x-2x/(1+x-2x/(1+x-3x/(1+x-3x/(1+x-4x/(1+... (continued fraction);
a(n) = Sum_{k=0..n} binomial(2n-k,k)*(n-k)!*(-1)^k. (End)
a(n) = (-1)^n*hypergeom([1, -n, n+1],[1/2],1/4). - Mark van Hoeij, Nov 12 2009
a(n) = round( 2*exp(-2)*(BesselK(1+n,2) + BesselK(n,2)) ) for n>0. - Mark van Hoeij, Nov 12 2009
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+k,2*k)*k!. - Paul Barry, Jun 23 2010
G.f.: Sum_{n>=0} n!*x^n/(1+x)^(2*n+1). - Ira M. Gessel, Jan 15 2013
a(n) ~ exp(-2)*n!. - Vaclav Kotesovec, Mar 10 2014
a(-1 - n) = -a(n) for all n in Z. - Michael Somos, May 28 2014
a(n) = Sum_{i=3..n} A000179(i), n>=1. - Vladimir Shevelev, Jun 21 2015
0 = a(n)*(-a(n+2) - a(n+3)) + a(n+1)*(+a(n+1) + 2*a(n+2) + a(n+3) - a(n+4)) + a(n+2)*(+a(n+2) + 2*a(n+3) - a(n+4)) + a(n+3)*(+a(n+3)) for all n in Z. - Michael Somos, Oct 16 2016

Extensions

More terms from James Sellers, Aug 21 2000
More terms from Simone Severini, Oct 14 2004

A000905 Hamilton numbers.

Original entry on oeis.org

2, 3, 5, 11, 47, 923, 409619, 83763206255, 3508125906290858798171, 6153473687096578758448522809275077520433167, 18932619208894981833333582059033329370801266249535902023330546944758507753065602135843
Offset: 1

Views

Author

Keywords

Comments

a(n) is the minimal degree of an equation from which n successive terms after the first can be removed (by a series of transformation comparable to Tschirnhaus') without requiring the solution of an equation of degree greater than n (and excluding cases where an equation of degree greater than n is needed but is in fact factorizable into several equations of degree all less than n). Hamilton computed the first six terms of this sequence (see reference). That is the reason Sylvester and Hammond named them "Hamilton numbers". - Olivier Gérard, Oct 17 2007
Named after the Irish mathematician William Rowan Hamilton (1805-1865). - Amiram Eldar, Jun 19 2021

Examples

			a(1)=2 is the familiar fact than one can always remove the linear term of a quadratic equation.
a(2)=3 because one can put any cubic equation in the form x^3-a=0 by a Tschirnhaus transformation based on the solutions of a quadratic equation.
a(4)=11 because one can remove the 4 terms after the first term in a polynomial of degree 11 without having to solve a quintic.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001660.
Equals A006719(n) - 1.
Cf. A134294.

Programs

  • Maple
    A000905 := proc(n) option remember; local i; if n=1 then 2 else 2+add((-1)^(i+1)*binomial(A000905(n-i),i+1),i=1..n-1); fi; end;
  • Mathematica
    a[1]=2; a[n_] := a[n] = 2+Sum[(-1)^(i+1)*Product[a[n-i] - k, {k, 0, i}]/(i+1)!, {i, 1, n-1}]; Table[a[n], {n, 1, 11}] (* Jean-François Alcover, May 17 2011, after Maple prog. *)
  • Python
    from sympy import binomial
    a = [2]
    [a.append(2+sum((-1)**(i)*binomial(a[n-i-1], i+2) for i in range(n))) for n in range(1,11)]
    print(a) # Nicholas Stefan Georgescu, Mar 01 2023

Extensions

The formula given by Lucas on p. 498 is slightly in error - see Maple program given here.

A127548 O.g.f.: Sum_{n>=0} n!*(x/(1+x)^2)^n.

Original entry on oeis.org

1, 1, 0, 1, 4, 19, 112, 771, 6088, 54213, 537392, 5867925, 69975308, 904788263, 12607819040, 188341689287, 3002539594128, 50878366664393, 913161208490016, 17304836525709097, 345279674107957524, 7235298537356113339
Offset: 0

Views

Author

Vladeta Jovovic, Jun 27 2007

Keywords

Comments

a(n+1) = inverse binomial transform of A013999 = Sum_{k=0..n} binomial(n,k)*(-1)^(n-k)*A013999(k). - Emanuele Munarini, Jul 01 2013

Crossrefs

Programs

  • Maple
    A127548 := proc(n) if n = 0 then 1 ; else add(factorial(s)*(-1)^(n-s)*binomial(s+n-1,2*s-1),s=1..n) ; fi ; end: for n from 0 to 20 do printf("%d,",A127548(n)) ; od ; # R. J. Mathar, Jul 13 2007
  • Mathematica
    nn = 21; CoefficientList[Series[Sum[n!*(x/(1 + x)^2)^n, {n, 0, nn}], {x, 0, nn}], x] (* Michael De Vlieger, Sep 04 2016 *)
  • Python
    import math
    def binomial(n,m):
        a=1
        for k in range(n-m+1,n+1):
            a *= k
        return a//math.factorial(m)
    def A127548(n):
        if n == 0:
            return 1
        a=0
        for s in range(1,n+1):
            a += (-1)**(n-s)*binomial(s+n-1,2*s-1)*math.factorial(s)
        return a
    for n in range(30):
        print(A127548(n))
    # R. J. Mathar, Oct 20 2009

Formula

a(n) = Sum_{s=1..n} (-1)^(n-s)*s!*C(s+n-1,2s-1) if n>=1, where C(a,b)=binomial(a,b). - R. J. Mathar, Jul 13 2007
G.f.: Q(0) where Q(k) = 1 + (2*k + 1)*x/( (1+x)^2- 2*x*(1+x)^2*(k+1)/(2*x*(k+1) + (1+x)^2/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 08 2013
a(n) = A000271(n) + A000271(n-1). - Peter Bala, Sep 02 2016
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Oct 31 2017

Extensions

More terms from R. J. Mathar, Jul 13 2007
More terms from R. J. Mathar, Oct 20 2009

A273596 For n >= 2, a(n) is the number of slim rectangular diagrams of length n.

Original entry on oeis.org

1, 3, 9, 32, 139, 729, 4515, 32336, 263205, 2401183, 24275037, 269426592, 3257394143, 42615550453, 599875100487, 9040742057760, 145251748024649, 2478320458476795, 44755020000606961, 852823700470009056, 17101229029400788083, 359978633317886558801, 7936631162022905081707
Offset: 2

Views

Author

Tamas Dekany, May 26 2016

Keywords

Examples

			The initial term is the diagram of the four element diamond shape lattice.
		

Crossrefs

Programs

  • Maple
    A273596 := proc (n) option remember; `if`(n = 2, 1, `if`(n = 3, 3, (n-2)*procname(n-1) + procname(n-2) + 2)) end: seq(A273596(n), n = 2..20); # Peter Bala, Jan 08 2017
  • Mathematica
    x = 15;
    SRectD = Table[0, {x}];
    For[n = 2, n < x, n++,
    For[a = 1, a < n, a++,
       For[b = 1, b <= n - a, b++,
        SRectD[[n]] +=
          Binomial[n - a - 1, b - 1]*
           Binomial[n - b - 1, a - 1]*(n - a - b)!;
        ]
       ]
      Print[n, " ", SRectD[[n]]]
    ]
    (* Alternatively: *)
    T[n_, k_] := HypergeometricPFQ[{k+1, k-n}, {}, -1];
    Table[Sum[T[n,k], {k,0,n}], {n,0,22}] (* Peter Luschny, Oct 05 2017 *)
  • PARI
    a(n)= sum(rps=1, n, sum(r=1, n, s = rps-r; binomial(n-r-1, s-1) * binomial(n-s-1, r-1) * (n-r-s)!)); \\ Michel Marcus, Jun 12 2016

Formula

a(n) = Sum_{1<=r,s; r+s<=n} binomial(n-r-1, s-1) * binomial(n-s-1, r-1) * (n-r-s)!.
a(n) ~ exp(2) * n! / n^2. - Vaclav Kotesovec, Jun 29 2016
a(n) = Sum_{k=0..n} hypergeom([k+1, k-n], [], -1). - Peter Luschny, Oct 05 2017
From Peter Bala, Jan 08 2018: (Start)
a(n) = Sum_{k = 0..n-2} k!*binomial(n+k-1, 2*k+1).
a(n) = (n - 2)*a(n-1) + a(n-2) + 2, with a(2) = 1, a(3) = 3.
a(n+2) = 1/n!*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)* A000522(n)^2.
Row sums of array A143409 read as a triangle.
O.g.f.: Sum_{n >= 0} n!*x^(n+2)/(1 - x)^(2*n+2). Cf. A000179, A000271, A000904 and A127548.
O.g.f. with offset 0: 1/(1 - x) o 1/(1 - x) = 1 + 3*x + 9*x^2 + 32*x^3 + ..., where o denotes the white diamond multiplication of power series. See the Bala link for details. (End)

A335692 Inverse BINOMIAL transform of A335691.

Original entry on oeis.org

1, -1, 2, 0, 72, 1560, 59760, 2983680, 194382720, 15959099520, 1613411654400, 196978231296000, 28577836603008000, 4860382977536486400, 957836230033255372800, 216533832180149772288000, 55662541733368168574976000, 16145371763295690081374208000
Offset: 0

Views

Author

N. J. A. Sloane, Jul 20 2020

Keywords

Comments

a(n)/n! = A000904(n-2) for n >= 2.

References

  • I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. See p. 115, "n! b_{n+1}".

Crossrefs

A001660 Hypotenusal numbers.

Original entry on oeis.org

1, 1, 2, 6, 36, 876, 408696, 83762796636, 3508125906207095591916, 6153473687096578758445014683368786661634996, 18932619208894981833333582059033329370801260096062214926751788496235698477988081702676
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. J. Sylvester and M. J. Hammond, On Hamilton's numbers, Phil. Trans. Roy. Soc., 178 (1887), 285-312.

Crossrefs

First differences of A000905.

Programs

  • Mathematica
    h[1] = 2; h[n_] := h[n] = 2+Sum[(-1)^(i+1)*Product[h[n-i]-k, {k, 0, i}]/(i+1)!, {i, 1, n-1}]; a[0] = 1; a[n_] := h[n+1] - h[n]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Dec 05 2013 *)
Showing 1-8 of 8 results.