cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002375 From Goldbach conjecture: number of decompositions of 2n into an unordered sum of two odd primes.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 4, 4, 2, 3, 4, 3, 4, 5, 4, 3, 5, 3, 4, 6, 3, 5, 6, 2, 5, 6, 5, 5, 7, 4, 5, 8, 5, 4, 9, 4, 5, 7, 3, 6, 8, 5, 6, 8, 6, 7, 10, 6, 6, 12, 4, 5, 10, 3, 7, 9, 6, 5, 8, 7, 8, 11, 6, 5, 12, 4, 8, 11, 5, 8, 10, 5, 6, 13, 9, 6, 11, 7, 7, 14, 6, 8, 13, 5, 8, 11, 7, 9
Offset: 1

Views

Author

Keywords

Comments

A weaker form of this conjecture, the ternary form, was proved by Helfgott (see link below). - T. D. Noe, May 14 2013
The Goldbach conjecture is that for n >= 3, this sequence is always positive.
This has been checked up to at least 10^18 (see A002372).
With the exception of the n=2 term, identical to A045917.
The conjecture has been verified up to 3 * 10^17 (see MathWorld link). - Dmitry Kamenetsky, Oct 17 2008
Languasco and Zaccagnini proved that, where Lambda is the von Mangoldt function, and R(n) = Sum_{i + j = n} Lambda(i)*Lambda(j) is the counting function for the Goldbach numbers, and for N >= 2 and assume the Riemann hypothesis (RH) holds, then Sum_{n = 1..N} R(n) = (N^2)/2 - 2*Sum_{rho} ((N^(rho+1))/(rho*(rho+1))) + O(N * log^3 N).
If 2n is the sum of two distinct primes, then neither prime divides 2n. - Christopher Heiling, Feb 28 2017

Examples

			2 and 4 are not the sum of 2 odd primes, so a(1) = a(2) = 0; 6 = 3 + 3 (one way, so a(3) = 1); 8 = 3 + 5 (so a(4) = 1); 10 = 3 + 7 = 5 + 5 (so a(5) = 2); etc.
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, MA, 1996, Chapter 12, Pages 236-257.
  • Apostolos K. Doxiadis, Uncle Petros and Goldbach's Conjecture, Bloomsbury Pub. PLC USA, 2000.
  • D. A. Grave, Traktat z Algebrichnogo Analizu (Monograph on Algebraic Analysis). Vol. 2, p. 19. Vidavnitstvo Akademiia Nauk, Kiev, 1938.
  • H. Halberstam and H. E. Richert, 1974, "Sieve methods", Academic press, London, New York, San Francisco.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 80.
  • N. V. Maslova, On the coincidence of Grünberg-Kegel graphs of a finite simple group and its proper subgroup, Proceedings of the Steklov Institute of Mathematics April 2015, Volume 288, Supplement 1, pp 129-141; Original Russian Text: Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Vol. 20, No. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also A061358. Cf. A002372 (ordered sums), A002373, A002374, A045917.
A023036 is (essentially) the first appearance of n and A000954 is the last (assumed) appearance of n.
Cf. A065091, A010051, A001031 (a weaker form of the conjecture).

Programs

  • Haskell
    a002375 n = sum $ map (a010051 . (2 * n -)) $ takeWhile (<= n) a065091_list
    -- Reinhard Zumkeller, Sep 02 2013
    
  • Magma
    A002375 := func; [A002375(n):n in[1..98]];
    
  • Maple
    A002375 := proc(n) local s, p; s := 0; p := 3; while p<2*n do s := s+x^p; p := nextprime(p) od; (coeff(s^2, x, 2*n)+coeff(s,x,n))/2 end; [seq(A002375(n), n=1..100)];
    a:=proc(n) local c,k; c:=0: for k from 1 to floor((n-1)/2) do if isprime(2*k+1)=true and isprime(2*n-2*k-1)=true then c:=c+1 else c:=c fi od end: A:=[0,0,seq(a(n),n=3..98)]; # Emeric Deutsch, Aug 27 2007
    g:=sum(sum(x^(ithprime(i)+ithprime(j)),i=2..j),j=2..50): seq(coeff(g,x,2*n), n =1..98); # Emeric Deutsch, Aug 27 2007
  • Mathematica
    f[n_] := Length[ Select[2n - Prime[ Range[2, PrimePi[n]]], PrimeQ]]; Table[ f[n], {n, 100}] (* Paul Abbott, Jan 11 2005 *)
    nn = 10^2; ps = Boole[PrimeQ[Range[1,2*nn,2]]]; Table[Sum[ps[[i]] ps[[n-i+1]], {i, Ceiling[n/2]}], {n, nn}] (* T. D. Noe, Apr 13 2011 *)
    Table[Count[IntegerPartitions[2n,{2}],?(AllTrue[#,PrimeQ]&&FreeQ[#,2]&)],{n,100}] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale, Mar 01 2018 *)
    j[n_] := If[PrimeQ[2 n - 1], 2 n - 1, 0]; A085090 = Array[j, 98];
    r[n_] := Table[A085090[[k]] + A085090[[n - k + 1]], {k, 1, n}];
    countzeros[l_List] := Sum[KroneckerDelta[0, k], {k, l}];
    Table[((x = n - 2 countzeros[A085090[[1 ;; n]]] + countzeros[r[n]]) +
    KroneckerDelta[OddQ[x], True])/2, {n, 1, 98}] (* Fred Daniel Kline, Aug 30 2018 *)
  • MuPAD
    A002375 := proc(n) local s,p; begin s := 0; p := 3; repeat if isprime(2*n-p) then s := s+1 end_if; p := nextprime(p+2); until p>n end_repeat; s end_proc:
    
  • PARI
    A002375(n)=sum(i=2,primepi(n),isprime(2*n-prime(i))) /* ...i=1... gives A045917 */
    
  • PARI
    apply( {A002375(n,s=0,N=2*n)=forprime(p=n, N-3, isprime(N-p)&&s++);s}, [1..100]) \\ M. F. Hasler, Jan 03 2023
    
  • Python
    from sympy import primerange, isprime
    def A002375(n): return sum(1 for p in primerange(3,n+1) if isprime((n<<1)-p)) # Chai Wah Wu, Feb 20 2025
  • Sage
    def A002375(n):
        P = primes(3, n+1)
        M = (2*n - p for p in P)
        F = [k for k in M if is_prime(k)]
        return len(F)
    [A002375(n) for n in (1..98)] # Peter Luschny, May 19 2013
    

Formula

From Halberstam and Richert: a(n) < (8+0(1))*c(n)*n/log(n)^2 where c(n) = Product_{p > 2} (1-1/(p-1)^2)*Product_{p|n, p > 2} (p-1)/(p-2). It is conjectured that the factor 8 can be replaced by 2. Is a(n) > n/log(n)^2 for n large enough? - Benoit Cloitre, May 20 2002
a(n) = ceiling(A002372(n)/2). - Emeric Deutsch, Jul 14 2004
G.f.: Sum_{j>=2} Sum_{i=2..j} x^(p(i) + p(j)), where p(k) is the k-th prime. - Emeric Deutsch, Aug 27 2007
Not very efficient: a(n) = (Sum_{i=1..n} (pi(i) - pi(i-1)) * (pi(2n-i) - pi(2n-i-1))) - floor(2/n)*floor(n/2). - Wesley Ivan Hurt, Jan 06 2013
For n >= 2, a(n) = Sum_{3 <= p <= n, p is prime} A(2*n - p) - binomial(A(n), 2) - a(n-1) - a(n-2) - ... - a(1), where A(n) = A033270(n) (see Example 1 in link of V. Shevelev). - Vladimir Shevelev, Jul 08 2013

Extensions

Beginning corrected by Paul Zimmermann, Mar 15 1996
More terms from James Sellers
Edited by Charles R Greathouse IV, Apr 20 2010

A045917 From Goldbach problem: number of decompositions of 2n into unordered sums of two primes.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 4, 4, 2, 3, 4, 3, 4, 5, 4, 3, 5, 3, 4, 6, 3, 5, 6, 2, 5, 6, 5, 5, 7, 4, 5, 8, 5, 4, 9, 4, 5, 7, 3, 6, 8, 5, 6, 8, 6, 7, 10, 6, 6, 12, 4, 5, 10, 3, 7, 9, 6, 5, 8, 7, 8, 11, 6, 5, 12, 4, 8, 11, 5, 8, 10, 5, 6, 13, 9, 6, 11, 7, 7, 14, 6, 8, 13, 5, 8, 11, 7, 9
Offset: 1

Views

Author

Keywords

Comments

Note that A002375 (which differs only at the n = 2 term) is the main entry for this sequence.
The graph of this sequence is called Goldbach's comet. - David W. Wilson, Mar 19 2012
This is the row length sequence of A182138, A184995 and A198292. - Jason Kimberley, Oct 03 2012
The Goldbach conjecture states that a(n) > 0 for n >= 2. - Wolfdieter Lang, May 14 2016
With the second Maple program, the command G(2n) yields all the unordered pairs of prime numbers having sum 2n; caveat: a pair {a,a} is listed as {a}. Example: G(26) yields {{13}, {3,23}, {7,19}}. The command G(100000) yields 810 pairs very fast. - Emeric Deutsch, Jan 03 2017
Conjecture: Let p denote any prime in any decomposition of 2n. 4 and 6 are the only numbers n such that 2n + p is prime for every p. - Ivan N. Ianakiev, Apr 06 2017
Conjecture: For all m >= 0, there exists at least one possible value of n such that a(n) = m. - Ahmad J. Masad, Jan 06 2018
The previous conjecture is related to the sequence A053033. - Ahmad J. Masad, Dec 09 2019
Conjecture: For each k >= 0, there exists a minimum sufficiently large number r that depends on k such that for each n >= r, a(n) > k. - Ahmad J. Masad, Jan 08 2020
Conjecture: If the previous conjecture is true, then for each m >= 0, the number of terms that are equal to (m+1) is larger than the number of terms that are equal to m. - Ahmad J. Masad, Jan 08 2020
Also, the number of equidistant prime pairs in Goldbach's Prime Triangle for integers n > 2. An equidistant prime pair is a pair of not necessarily different prime numbers (p1, p2) that have the same distance d >= 0 from an integer n, i.e., so that p1 = n - d and p2 = n + d. - Jörg Winkelmann, Mar 05 2025

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, MA, 1996, Chapter 12, pages 236-257.
  • H. Halberstam and H. E. Richert, 1974, "Sieve methods", Academic press, London, New York, San Francisco.

Crossrefs

Cf. A002375 (the main entry for this sequence (which differs only at the n=2 term)).
Cf. A023036 (first appearance of n), A000954 (last (assumed) appearance of n).

Programs

  • Haskell
    a045917 n = sum $ map (a010051 . (2 * n -)) $ takeWhile (<= n) a000040_list
    -- Reinhard Zumkeller, Sep 02 2013
    
  • Magma
    [#RestrictedPartitions(2*n,2,Set(PrimesInInterval(1,2*n))):n in [1..100]]; // Marius A. Burtea, Jan 23 2020
  • Maple
    A045917 := proc(n)
        local a,i ;
        a := 0 ;
        for i from 1 to n do
            if isprime(i) and isprime(2*n-i) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jul 01 2013
    # second Maple program:
    G := proc (n) local g, j: g := {}: for j from 2 to (1/2)*n do if isprime(j) and isprime(n-j) then g := `union`(g, {{n-j, j}}) end if end do: g end proc: seq(nops(G(2*n)), n = 1 .. 98); # Emeric Deutsch, Jan 03 2017
  • Mathematica
    f[n_] := Length[Select[2n - Prime[Range[PrimePi[n]]], PrimeQ]]; Table[ f[n], {n, 100}] (* Paul Abbott, Jan 11 2005 *)
    nn = 10^2; ps = Boole[PrimeQ[Range[1,2*nn,2]]]; Join[{0,1}, Table[Sum[ps[[i]] ps[[n-i+1]], {i, Ceiling[n/2]}], {n, 3, nn}]] (* T. D. Noe, Apr 13 2011 *)
  • PARI
    a(n)=my(s);forprime(p=2,n,s+=isprime(2*n-p));s \\ Charles R Greathouse IV, Mar 27 2012
    
  • Python
    from sympy import isprime
    def A045917(n):
        x = 0
        for i in range(2,n+1):
            if isprime(i) and isprime(2*n-i):
                x += 1
        return x # Chai Wah Wu, Feb 24 2015
    

Formula

From Halberstam and Richert: a(n) < (8+0(1))*c(n)*n/log(n)^2 where c(n) = Product_{p>2} (1 - 1/(p-1)^2)*Product_{p|n, p>2} (p-1)/(p-2). It is conjectured that the factor 8 can be replaced by 2. - Benoit Cloitre, May 16 2002
a(n) = ceiling(A035026(n) / 2) = (A035026(n) + A010051(n)) / 2.
a(n) = Sum_{i=2..n} floor(2/Omega(i*(2*n-i))). - Wesley Ivan Hurt, Jan 24 2013
a(n) = A224709(n) + (primepi(2n-2) - primepi(n-1)) + primepi(n) + 1 - n. - Anthony Browne, May 03 2016
a(n) = A224708(2n) - A224708(2n+1) + A010051(n). - Anthony Browne, Jun 26 2016
a(n) = Sum_{k=n*(n-1)/2+2..n*(n+1)/2} A064911(A105020(k-1)). - Wesley Ivan Hurt, Sep 11 2021
a(n) = omega(A362641(n)) = omega(A362640(n)). - Wesley Ivan Hurt, Apr 28 2023

A023036 Smallest positive even integer that is an unordered sum of two primes in exactly n ways.

Original entry on oeis.org

2, 4, 10, 22, 34, 48, 60, 78, 84, 90, 114, 144, 120, 168, 180, 234, 246, 288, 240, 210, 324, 300, 360, 474, 330, 528, 576, 390, 462, 480, 420, 570, 510, 672, 792, 756, 876, 714, 798, 690, 1038, 630, 1008, 930, 780, 960, 870, 924, 900, 1134, 1434, 840, 990, 1302, 1080
Offset: 0

Views

Author

David W. Wilson, Jun 14 1998

Keywords

Comments

Except for first two terms, same as A001172.
The first occurrence of k in A045917.
The graph looks like a comet. - Daniel Forgues, Jun 12 2014

Examples

			a(3) = 22 as 22 = (19+3) = (17+5) = (11+11). There are exactly 3 ways 22 can be expressed as the sum of two primes and no even number less than 22 can be so expressed.
From _Daniel Forgues_, Jun 13 2014: (Start)
Terms for n = 1..6 and corresponding sums:
  a(1) =  4 =  2 + 2;
  a(2) = 10 =  7 + 3 =  5 +  5;
  a(3) = 22 = 19 + 3 = 17 +  5 = 11 + 11;
  a(4) = 34 = 31 + 3 = 29 +  5 = 23 + 11 = 17 + 17;
  a(5) = 48 = 43 + 5 = 41 +  7 = 37 + 11 = 31 + 17 = 29 + 19;
  a(6) = 60 = 53 + 7 = 47 + 13 = 43 + 17 = 41 + 19 = 37 + 23 = 31 + 29.
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ Select[2n - Prime@ Range@ PrimePi@ n, PrimeQ]; nn = 100; t = Table[0, {nn}]; k = 1; cnt = 0; While[cnt < nn, a = f@k; If[a <= nn && t[[a]] == 0, t[[a]] = 2 k; cnt++]; k++]; t (* Robert G. Wilson v, Mar 15 2011 *)

A001172 Smallest even number that is an unordered sum of two odd primes in exactly n ways.

Original entry on oeis.org

0, 6, 10, 22, 34, 48, 60, 78, 84, 90, 114, 144, 120, 168, 180, 234, 246, 288, 240, 210, 324, 300, 360, 474, 330, 528, 576, 390, 462, 480, 420, 570, 510, 672, 792, 756, 876, 714, 798, 690, 1038, 630, 1008, 930, 780, 960, 870, 924, 900, 1134, 1434, 840, 990, 1302
Offset: 0

Views

Author

N. J. A. Sloane, Eric Wolman, Dec 17 1969

Keywords

Comments

a(n) = A023036(n) for all n > 1.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Divided by 2: A258713.

Programs

  • Mathematica
    nn = 55; a = Table[0, {nn}]; n = 6; While[Times @@ a == 0, c = 0; k = 3; While[k <= n/2, If[PrimeQ[k] && PrimeQ[n - k], c++]; k++]; If[c <= nn && a[[c]] == 0, a[[c]] = n]; n = n + 2]; Prepend[a, 0]

Extensions

a(0) corrected by Zak Seidov, Sep 30 2011

A352231 Numbers that can be expressed as the sum of two primes in exactly 9 ways.

Original entry on oeis.org

90, 132, 170, 196, 202, 220, 230, 236, 238, 244, 250, 254, 262, 268, 302, 314, 338, 346, 356, 388, 428, 458, 488
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 08 2022

Keywords

Examples

			90 = 7+83 = 11+79 = 17+73 = 19+71 = 23+67 = 29+61 = 31+59 = 37+53 = 43+47.
		

Crossrefs

Numbers that can be expressed as the sum of two primes in k ways for k=0..10: A014092 (k=0), A067187 (k=1), A067188 (k=2), A067189 (k=3), A067190 (k=4), A067191 (k=5), A066722 (k=6), A352229 (k=7), A352230 (k=8), this sequence (k=9), A352233 (k=10).

Programs

Formula

A061358(a(n)) = 9. - Alois P. Heinz, Mar 08 2022

A000974 Conjecturally the number of even integers the sum of two primes in exactly n ways.

Original entry on oeis.org

1, 4, 9, 11, 11, 16, 16, 18, 20, 23, 16, 29, 16, 25, 27, 23, 22, 25, 35, 29, 26, 25, 27, 27, 27, 33, 28, 44, 35, 21, 29, 35, 38, 33, 39, 37, 34, 35, 31, 31, 28, 41, 37, 32, 44, 35, 37, 41, 44, 33, 37, 32, 47, 39, 43, 47, 33, 37, 48, 41, 37, 48, 34, 35, 47, 36, 29, 36, 46, 44, 43, 38, 48
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[ Select[2n - Prime[ Range[ PrimePi[n]]], PrimeQ]]; a = Table[0, {75}]; Do[c = f[n]; If[c < 75, a[[c + 1]]++ ], {n, 5000}]; a (* Robert G. Wilson v, using Paul Abbott's coding in A002375, Apr 07 2005 *)

A105093 Numbers n such that n = prime(k) + prime(k+3) = prime(k+1) + prime(k+2) for some k.

Original entry on oeis.org

18, 24, 30, 36, 60, 84, 120, 162, 204, 210, 216, 240, 288, 330, 372, 390, 456, 520, 540, 624, 726, 762, 798, 840, 852, 882, 924, 978, 990, 1104, 1140, 1164, 1200, 1392, 1410, 1428, 1530, 1632, 1650, 1716, 1740, 1764, 1794, 1848, 1974, 2052, 2100, 2112, 2184
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 06 2005

Keywords

Examples

			a(1)=18 because prime(3)+prime(6)=prime(4)+prime(5)=5+13=7+11=18.
		

Crossrefs

Cf. A001172, A000954, first primes in A022885.

Programs

  • Mathematica
    lst = {}; Do[ If[ Prime[n] + Prime[n + 3] == Prime[n + 1] + Prime[n + 2], AppendTo[lst, Prime[n] + Prime[n + 3]]], {n, 184}]; lst (* Robert G. Wilson v, Apr 07 2005 *)
  • Python
    from sympy import nextprime
    A105093_list, plist = [], [2,3,5,7]
    while len(A105093_list) < 10000:
        m = plist[0]+plist[3]
        if m == plist[1]+plist[2]:
            A105093_list.append(m)
        plist = plist[1:] + [nextprime(plist[-1])] # Chai Wah Wu, Mar 30 2020

Extensions

Edited and extended by Robert G. Wilson v, Apr 07 2005

A056636 Conjecturally largest even integer which is the sum of two primes in at most n ways.

Original entry on oeis.org

2, 12, 68, 128, 152, 188, 332, 398, 398, 488, 632, 692, 692, 992, 992, 992, 1112, 1112, 1412, 1412, 1448, 1718, 1718, 1718, 1718, 2048, 2252, 2252, 2672, 2672, 2672, 2936, 2936, 2936, 2978, 3092, 3092, 3218, 3272, 3296, 3632, 3632, 3754, 4022, 4058, 4412
Offset: 0

Views

Author

Brian Galebach Aug 17 2000

Keywords

Comments

The Goldbach conjecture is that every even number >= 4 is the sum of two primes.

Examples

			a(1) is 12 because it is the largest even integer having only 1 distinct way to express it as the sum of two primes (7+5) and a(0) < 12.
a(8) = 398 because it is the largest number in A000954 for n <= 8.
		

Crossrefs

Formula

a(n) = max({A000954(i),i=0..n}). - Robert Israel, Mar 21 2016

A109679 Smallest even number which is the unordered sum of two primes in more ways than any previous even number.

Original entry on oeis.org

2, 4, 10, 22, 34, 48, 60, 78, 84, 90, 114, 120, 168, 180, 210, 300, 330, 390, 420, 510, 630, 780, 840, 990, 1050, 1140, 1260, 1470, 1650, 1680, 1890, 2100, 2310, 2730, 3150, 3570, 3990, 4200, 4410, 4620, 5250, 5460, 6090, 6510, 6930, 7980, 8190, 9030, 9240
Offset: 1

Views

Author

Gilmar Rodriguez Pierluissi (gilmarlily(AT)yahoo.com), Aug 30 2005

Keywords

Comments

Record value of A023036 or A045917.
a(n)== 0 (mod 30) for n > 13.

Crossrefs

Essentially the same as A082917. Cf. A082918, A002375, A023036, A045917, A000954.

Programs

  • Mathematica
    f[n_] := Length[ Select[n - Prime@ Range@ PrimePi[n/2], PrimeQ]]; t = {}; mxm = -1; Do[ If[ f[n] > mxm, AppendTo[t, n]; mxm = f[n]], {n, 2, 9000, 2}]; t

Extensions

Edited and extended by Robert G. Wilson v, Sep 08 2005
Changed offset from 0 to 1 by Vincenzo Librandi, Apr 18 2013

A174327 Conjecturally, even numbers n such that every even number greater than n has more decompositions as the sum of two primes.

Original entry on oeis.org

2, 12, 68, 128, 152, 188, 332, 398, 488, 632, 692, 992, 1112, 1412, 1448, 1718, 2048, 2252, 2672, 2936, 2978, 3092, 3218, 3272, 3296, 3632, 3754, 4022, 4058, 4412, 4448, 4478, 4688, 5078, 5468, 5528, 5948, 6068, 6152, 6368, 6506, 6632, 7292, 7508, 8042
Offset: 1

Views

Author

T. D. Noe, Mar 16 2010

Keywords

Comments

These numbers are the record values in A000954.
Showing 1-10 of 12 results. Next