A001003 Schroeder's second problem (generalized parentheses); also called super-Catalan numbers or little Schroeder numbers.
1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723, 13648869, 71039373, 372693519, 1968801519, 10463578353, 55909013009, 300159426963, 1618362158587, 8759309660445, 47574827600981, 259215937709463, 1416461675464871
Offset: 0
Examples
G.f. = 1 + x + 3*x^2 + 11*x^3 + 45*x^4 + 197*x^5 + 903*x^6 + 4279*x^7 + ... a(2) = 3: abc, a(bc), (ab)c; a(3) = 11: abcd, (ab)cd, a(bc)d, ab(cd), (ab)(cd), a(bcd), a(b(cd)), a((bc)d), (abc)d, (a(bc))d, ((ab)c)d. Sum over partitions formula: a(3) = 2*a(0)*a(2) + 1*a(1)^2 + 3*(a(0)^2)*a(1) + 1*a(0)^4 = 6 + 1 + 3 + 1 = 11. a(4) = 45 since the top row of Q^3 = (11, 14, 12, 8, 0, 0, 0, ...); (11 + 14 + 12 + 8) = 45.
References
- D. Arques and A. Giorgetti, Une bijection géometrique entre une famille d'hypercartes et une famille de polygones énumérées par la série de Schroeder, Discrete Math., 217 (2000), 17-32.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- N. Bernasconi et al., On properties of random dissections and triangulations, Combinatorica, 30 (6) (2010), 627-654.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 618.
- Peter J. Cameron, Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See p. 155, also p. 179, line -9. - N. J. A. Sloane, Apr 18 2014
- C. Coker, A family of eigensequences, Discrete Math. 282 (2004), 249-250.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 57.
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From N. J. A. Sloane, May 11 2012
- Emeric Deutsch, A bijective proof of an equation linking the Schroeder numbers, large and small, Discrete Math., 241 (2001), 235-240.
- Tomislav Doslic and Darko Veljan, Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From N. J. A. Sloane, May 01 2012
- Michael Drmota, Anna de Mier, and Marc Noy, Extremal statistics on non-crossing configurations. Discrete Math. 327 (2014), 103--117. MR3192420. See Eq. (2). - N. J. A. Sloane, May 18 2014
- I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
- I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing permutations, Discrete Math., 204 (1999), 203-229, Section 3.1.
- D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb Thy A 80 380-384 1997.
- Wolfgang Gatterbauer and Dan Suciu, Dissociation and propagation for approximate lifted inference with standard relational database management systems, The VLDB Journal, February 2017, Volume 26, Issue 1, pp. 5-30; DOI 10.1007/s00778-016-0434-5
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
- D. Gouyou-Beauchamps and B. Vauquelin, Deux propriétés combinatoires des nombres de Schroeder, Theor. Inform. Appl., 22 (1988), 361-388.
- N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
- M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
- D. E. Knuth, The Art of Computer Programming, Vol. 1, various sections (e.g. p. 534 of 2nd ed.).
- D. E. Knuth, The Art of Computer Programming, Vol. 1, (p. 539 of 3rd ed.).
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.2.1.6, Problem 66, p. 479.
- J. S. Lew, Polynomial enumeration of multidimensional lattices, Math. Systems Theory, 12 (1979), 253-270.
- Ana Marco and J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, 30 (2015), #7.
- T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360.
- L. Ozsvart, Counting ordered graphs that avoid certain subgraphs, Discr. Math., 339 (2016), 1871-1877.
- R. C. Read, On general dissections of a polygon, Aequat. Mathem. 18 (1978) 370-388, Table 6
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 168.
- E. Schroeder, Vier combinatorische Probleme, Zeit. f. Math. Phys., 15 (1870), 361-376.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 178; see page 239, Exercise 6.39b.
- H. N. V. Temperley and D. G. Rogers, A note on Baxter's generalization of the Temperley-Lieb operators, pp. 324-328 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
- I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 198.
- Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1312 (first 200 terms from T. D. Noe)
- J. Abate and W. Whitt, Integer Sequences from Queueing Theory, J. Int. Seq. 13 (2010), 10.5.5, p_n(1).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Marcelo Aguiar and Walter Moreira, Combinatorics of the free Baxter algebra, arXiv:math/0510169 [math.CO], 2005-2007, see Corollary 3.3.iii.
- Yu Hin Au, Some Properties and Combinatorial Implications of Weighted Small Schröder Numbers, arXiv:1912.00555 [math.CO], 2019.
- Axel Bacher, Directed and multi-directed animals on the king's lattice, arXiv preprint arXiv:1301.1365 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 04 2013
- Axel Bacher, Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths, arXiv:1802.06030 [cs.DS], 2018.
- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating functions for generating trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- E. Barcucci, E. Pergola, R. Pinzani and S. Rinaldi, ECO method and hill-free generalized Motzkin paths, Séminaire Lotharingien de Combinatoire, B46b (2001), 14 pp.
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo and Matteo Silimbani, Ascending runs in permutations and valued Dyck paths, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 445-463.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Generalized Catalan Numbers, Hankel Transforms and Somos-4 Sequences , J. Int. Seq. 13 (2010) #10.7.2.
- Paul Barry, Comparing two matrices of generalized moments defined by continued fraction expansions, arXiv preprint arXiv:1311.7161 [math.CO], 2013 and J. Int. Seq. 17 (2014) # 14.5.1.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.
- Karin Baur and P. P. Martin, The fibres of the Scott map on polygon tilings are the flip equivalence classes, arXiv preprint arXiv:1601.05080 [math.CO], 2016.
- Karin Baur and Paul P. Martin, A generalised Euler-Poincaré formula for associahedra, arXiv:1711.04986 [math.CO], 2017.
- Arkady Berenstein, Vladimir Retakh, Christophe Reutenauer and Doron Zeilberger, The Reciprocal of Sum_{n >= 0} a^n b^n for non-commuting a and b, Catalan numbers and non-commutative quadratic equations, arXiv preprint arXiv:1206.4225 [math.CO], 2012.
- Julia E. Bergner, Cedric Harper, Ryan Keller and Mathilde Rosi-Marshall, Action graphs, planar rooted forests, and self-convolutions of the Catalan numbers, arXiv:1807.03005 [math.CO], 2018.
- F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
- D. Birmajer, J. B. Gil and M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
- Daniel Birmajer and Juan B. Gil, Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
- Natasha Blitvić and Einar Steingrímsson, Permutations, moments, measures, arXiv:2001.00280 [math.CO], 2020.
- J. Bloom and A, Burstein, Egge triples and unbalanced Wilf-equivalence, arXiv preprint arXiv:1410.0230 [math.CO], 2014.
- Miklós Bóna, Cheyne Homberger, Jay Pantone, and Vince Vatter, Pattern-avoiding involutions: exact and asymptotic enumeration, arxiv:1310.7003 [math.CO], 2013.
- Henry Bottomley, Illustration of initial terms
- Mathilde Bouvel, Cedric Chauve, Marni Mishna and Dominique Rossin, Average-case analysis of perfect sorting by reversals, arXiv preprint arXiv:1201.0940 [cs.DM], 2012.
- M. Bouvel, L. Cioni and B. Izart, The interval posets of permutations seen from the decomposition tree perspective, arXiv:2110.10000 [math.CO], 2021. See Theorem 17 p. 13.
- Kevin Brown, Hipparchus on Compound Statements, 1994-2010.
- Alexander Burstein and Opel Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, arXiv:2002.12189 [math.CO], 2020.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Freddy Cachazo, Karen Yeats and Samuel Yusim, Compatible Cycles and CHY Integrals, arXiv:1907.12661 [math-ph], 2019.
- Fangfang Cai, Qing-Hu Hou, Yidong Sun and Arthur L.B. Yang, Combinatorial identities related to 2X2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018.
- H. Cambazard and N. Catusse, Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the Plane, arXiv preprint arXiv:1512.06649 [cs.DS], 2015.
- David Callan, Some bijections for lattice paths, arXiv:2112.05241 [math.CO], 2021.
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
- P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
- Grégory Chatel, Vincent Pilaud and Viviane Pons, The weak order on integer posets, arXiv:1701.07995 [math.CO], 2017.
- W. Y. C. Chen, T. Mansour and S. H. F. Yan, Matchings avoiding partial patterns, arXiv:math/0504342 [math.CO], 2005.
- William Y. C. Chen and Carol J. Wang, Noncrossing Linked Partitions and Large (3, 2)-Motzkin Paths, Discrete Math., 312 (2012), 1918-1922. - _N. J. A. Sloane_, Jun 08 2012
- Z. Chen and H. Pan, Identities involving weighted Catalan, Schröder and Motzkin Paths, arXiv:1608.02448 [math.CO] (2016), eq (1.13) a=1, b=2.
- J. Cigler, Ramanujan's q-continued fractions and Schröder-like numbers, arXiv:1210.0372 [math.HO], 2012. - _N. J. A. Sloane_, Dec 29 2012
- J. Cigler, Hankel determinants of some polynomial sequences, arXiv:1211.0816 [math.CO], 2012.
- Dennis E. Davenport, Louis W. Shapiro and Leon C. Woodson, A bijection between the triangulations of convex polygons and ordered trees, Integers (2020) Vol. 20, Article #A8.
- D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010) # 10.9.2.
- Vesselin Drensky, Graded Algebras, Algebraic Functions, Planar Trees, and Elliptic Integrals, arXiv:2004.05596 [math.RA], 2020, see p. 20.
- Rosena R. X. Du, Xiaojie Fan and Yue Zhao, Enumeration on row-increasing tableaux of shape 2 X n, arXiv:1803.01590 [math.CO], 2018.
- I. M. H. Etherington, Non-associate powers and a functional equation, Math. Gaz. 21 (1937), 36-39; addendum 21 (1937), 153.
- I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. [Annotated scanned copy]. Part II [not scanned] is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
- S.-P. Eu and T.-S. Fu, A simple proof of the Aztec diamond problem, arXiv:math/0412041 [math.CO], 2004.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see pages 69, 474-475, etc.
- Oisín Flynn-Connolly, E_n-coalgebras in simplicial sets, GitHub, Leiden Univ. (Netherlands, 2025). See p. 24.
- D. Foata and D. Zeilberger, A Classic Proof of a Recurrence for a Very Classical Sequence, arXiv:math/9805015 [math.CO], 1998.
- D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- N. Gabriel, K. Peske, L. Pudwell and S. Tay, Pattern Avoidance in Ternary Trees, J. Int. Seq. 15 (2012) # 12.1.5.
- W. Gatterbauer and D. Suciu, Approximate Lifted Inference with Probabilistic Databases, arXiv preprint arXiv:1412.1069 [cs.DB], 2014.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Evangelos Georgiadis, Akihiro Munemasa and Hajime Tanaka, A note on super Catalan numbers, arXiv:1101.1579 [math.CO], 2011-2012.
- Olivier Gérard, Illustration of initial terms (a)
- Olivier Gérard, Illustration of initial terms (b)
- Étienne Ghys, A Singular Mathematical Promenade, arXiv:1612.06373, 2016, also, The Mathematical Intelligencer (2018) 40.2, 85-88.
- Samuele Giraudo, Pluriassociative algebras II: The polydendriform operad and related operads, arXiv:1603.01394 [math.CO], 2016.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Li Guo and Jun Pei, Averaging algebras, Schröder numbers, rooted trees and operads, arXiv preprint arXiv:1401.7386 [math.RA], 2014.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 42 [Dead link]
- St. John Kettle, Letter to N. J. A. Sloane, 1982.
- Anton Khoroshkin and Thomas Willwacher, Real moduli space of stable rational curves revised, arXiv:1905.04499 [math.AT], 2019.
- A. Kirillov, On Some Quadratic Algebras I 1/2: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss-Catalan, Universal Tutte and Reduced Polynomials, arXiv preprint arXiv:1502.00426 [math.RT], 2016.
- E. Krasko and A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973).
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Letter to N. J. A. Sloane, 1978.
- V. V. Kruchinin and D. V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, arXiv preprint arXiv:1206.0877 [math.CO], 2012, and J. Int. Seq. 15 (2012) #12.9.3
- V. Kurauskas, On graphs containing few disjoint excluded minors. Asymptotic number and structure of graphs containing few disjoint minors K_4, arXiv preprint arXiv:1504.08107 [math.CO], 2015. See Section 8.1.
- J. S. Lew, Letter to N. J. A. Sloane, Sep 05 1978
- Huyile Liang, Jeffrey Remmel and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 11.
- Peter Luschny, The Lost Catalan Numbers And The Schröder Tableaux.
- A. Marco and J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, Volume 30 (2015), pp. 106-117.
- Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- D. Merlini, R. Sprugnoli and M. C. Verri, Waiting patterns for a printer, Discrete Applied Mathematics, Volume 144, Issue 3, 2004, pp. 359-373, ISSN 0166-218X.
- W. Mlotkowski and K. A. Penson, The probability measure corresponding to 2-plane trees, ArXiv preprint arXiv:1304.6544 [math.PR], 2013.
- T. Motzkin, The hypersurface cross ratio, Bull. Amer. Math. Soc., 51 (1945), 976-984.
- T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360.
- Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
- G. Muntingh, Implicit Divided Differences, Little Schröder Numbers, and Catalan Numbers, arXiv preprint arXiv:1204.2709 [math.CO], 2012, and J. Int. Seq. 15 (2012) #12.6.5.
- Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
- O. Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, arXiv:1209.1355 [math.CO], 2012-2014.
- O. Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, J. Combin. Theory A, 125 (2014), 357-378.
- R. A. Perez, A brief but historic article of Siegel, Notices AMS, 58 (2011), 558-566.
- E. Pergola and R. A. Sulanke, Schroeder Triangles, Paths, and Parallelogram Polyominoes, J. Integer Sequences, 1 (1998), #98.1.7.
- Vincent Pilaud, Pebble trees, arXiv:2205.06686 [math.CO], 2022.
- Vincent Pilaud and V. Pons, Permutrees, arXiv preprint arXiv:1606.09643 [math.CO], 2016.
- L. Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012.
- Feng Qi, Xiao-Ting Shi, and Bai-Ni Guo, Integral representations of the large and little Schröder numbers, Preprint, 2016.
- Feng Qi and Bai-Ni Guo, Some explicit and recursive formulas of the large and little Schröder numbers, Arab Journal of Mathematical Sciences, June 2016.
- Marko Riedel, Computation of the asymptotic by elementary means
- E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376. [Annotated scanned copy]
- L. W. Shapiro & N. J. A. Sloane, Correspondence, 1976
- M. Shattuck, On the zeros of some polynomials with combinatorial coefficients, Annales Mathematicae et Informaticae, 42 (2013) pp. 93-101.
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, arXiv:math/0312448 [math.CO], 2003.
- N. J. A. Sloane, Transforms
- N. J. A. Sloane, Illustrations of rooted planar trees with 2, 3, and 4 endpoints, illustrating a(1)=1, a(2)=3, a(4)=11.
- L. M. Smiley, Variants of Schroeder Dissections, arXiv:math/9907057 [math.CO], 1999.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- R. P. Stanley, Hipparchus, Plutarch, Schröder and Hough, Am. Math. Monthly, Vol. 104, No. 4, p. 344, 1997.
- R. P. Stanley, Hipparchus, Plutarch, Schröder, and Hough, Amer. Math. Monthly, 104, 1997, 344-350.
- Y. Sun and Z. Wang, Consecutive pattern avoidances in non-crossing trees, Graph. Combinat. 26 (2010) 815-832
- Anthony Van Duzer, Subtrees of a Given size in Schroeder Trees, arXiv:1904.05525 [math.CO], 2019.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 12.
- Eric Weisstein's World of Mathematics, Bracketing
- Eric Weisstein's World of Mathematics, Super Catalan Number
- Wen-jin Woan, A Recursive Relation for Weighted Motzkin Sequences Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.6.
- Wen-jin Woan, A Relation Between Restricted and Unrestricted Weighted Motzkin Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.7.
- Wikipedia, Schroeder-Hipparchus numbers.
- E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
- Index entries for sequences related to parenthesizing
- Index entries for "core" sequences
Crossrefs
Programs
-
Haskell
a001003 = last . a144944_row -- Reinhard Zumkeller, May 11 2013
-
Magma
R
:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( (1+x -Sqrt(1-6*x+x^2) )/(4*x) )); // G. C. Greubel, Oct 27 2024 -
Maple
t1 := (1/(4*x))*(1+x-sqrt(1-6*x+x^2)); series(t1,x,40); invtr:= proc(p) local b; b:= proc(n) option remember; local i; `if`(n<1, 1, add(b(n-i) *p(i-1), i=1..n+1)) end end: a:='a': f:= (invtr@@2)(a): a:= proc(n) if n<0 then 1 else f(n-1) fi end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 01 2009 # Computes n -> [a[0],a[1],..,a[n]] A001003_list := proc(n) local j,a,w; a := array(0..n); a[0] := 1; for w from 1 to n do a[w] := a[w-1]+2*add(a[j]*a[w-j-1],j=1..w-1) od; convert(a,list) end: A001003_list(100); # Peter Luschny, May 17 2011
-
Mathematica
Table[Length[Flatten[Nest[ #/.a_Integer:> Join[Range[0, a + 1], Range[a, 0, -1]] &, {0}, n]]], {n, 0, 10}]; Sch[ 0 ] = Sch[ 1 ] = 1; Sch[ n_Integer ] := Sch[ n ] = (3(2n - 1)Sch[ n - 1 ] - (n - 2)Sch[ n - 2 ])/(n + 1); Array[ Sch, 24, 0] (* Second program: *) a[n_] := Hypergeometric2F1[-n + 1, n + 2, 2, -1]; a[0] = 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 09 2011, after Vladeta Jovovic *) a[ n_] := SeriesCoefficient[ (1 + x - Sqrt[1 - 6 x + x^2]) / (4 x), {x, 0, n}]; (* Michael Somos, Aug 26 2015 *) Table[(KroneckerDelta[n] - GegenbauerC[n+1, -1/2, 3])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *) a[n_] := -LegendreP[n, -1, 2, 3] I / Sqrt[2]; a[0] = 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 16 2019 *) a[1]:=1; a[2]:=1; a[n_]:=a[n] = a[n-1]+2 Sum[a[k] a[n-k], {k,2,n-1}]; Map[a, Range[24]] (* Oliver Seipel, Nov 03 2024, after Schröder 1870 *) CoefficientList[InverseSeries[Series[x/(Series[(1 - x)/(1 - 2 x), {x, 0, 24}]), {x, 0, 24}]]/x, x] (* Mats Granvik, Jun 30 2025 *)
-
PARI
{a(n) = if( n<1, n==0, sum( k=0, n, 2^k * binomial(n, k) * binomial(n, k-1) ) / (2*n))}; /* Michael Somos, Mar 31 2007 */
-
PARI
{a(n) = my(A); if( n<1, n==0, n--; A = x * O(x^n); n! * simplify( polcoef( exp(3*x + A) * besseli(1, 2*x * quadgen(8) + A), n)))}; /* Michael Somos, Mar 31 2007 */
-
PARI
{a(n) = if( n<0, 0, n++; polcoef( serreverse( (x - 2*x^2) / (1 - x) + x * O(x^n)), n))}; /* Michael Somos, Mar 31 2007 */
-
PARI
N=30; x='x+O('x^N); Vec( (1+x-(1-6*x+x^2)^(1/2))/(4*x) ) \\ Hugo Pfoertner, Nov 19 2018
-
Python
# The objective of this implementation is efficiency. # n -> [a(0), a(1), ..., a(n)] def A001003_list(n): a = [0 for i in range(n)] a[0] = 1 for w in range(1, n): s = 0 for j in range(1, w): s += a[j]*a[w-j-1] a[w] = a[w-1]+2*s return a # Peter Luschny, May 17 2011
-
Python
from gmpy2 import divexact A001003 = [1, 1] for n in range(3,10**3): A001003.append(divexact(A001003[-1]*(6*n-9)-(n-3)*A001003[-2],n)) # Chai Wah Wu, Sep 01 2014
-
Sage
# Generalized algorithm of L. Seidel def A001003_list(n) : D = [0]*(n+1); D[1] = 1/2 b = True; h = 2; R = [1] for i in range(2*n-2) : if b : for k in range(h,0,-1) : D[k] += D[k-1] h += 1; else : for k in range(1,h, 1) : D[k] += D[k-1] R.append(D[h-1]); b = not b return R A001003_list(24) # Peter Luschny, Jun 02 2012
Formula
D-finite with recurrence: (n+1) * a(n) = (6*n-3) * a(n-1) - (n-2) * a(n-2) if n>1. a(0) = a(1) = 1.
a(n) = 3*a(n-1) + 2*A065096(n-2) (n>2). If g(x) = 1 + 3*x + 11*x^2 + 45*x^3 + ... + a(n)*x^n + ..., then g(x) = 1 + 3(x*g(x)) + 2(x*g(x))^2, g(x)^2 = 1 + 6*x + 31*x^2 + 156*x^3 + ... + A065096(n)*x^n + ... - Paul D. Hanna, Jun 10 2002
a(n+1) = -a(n) + 2*Sum_{k=1..n} a(k)*a(n+1-k). - Philippe Deléham, Jan 27 2004
a(n-2) = (1/(n-1))*Sum_{k=0..n-3} binomial(n-1,k+1)*binomial(n-3,k)*2^(n-3-k) for n >= 3 [G. Polya, Elemente de Math., 12 (1957), p. 115.] - N. J. A. Sloane, Jun 13 2015
G.f.: (1 + x - sqrt(1 - 6*x + x^2) )/(4*x) = 2/(1 + x + sqrt(1 - 6*x + x^2)).
a(n) ~ W*(3+sqrt(8))^n*n^(-3/2) where W = (1/4)*sqrt((sqrt(18)-4)/Pi) [See Knuth I, p. 534, or Perez. Note that the formula on line 3, page 475 of Flajolet and Sedgewick seems to be wrong - it has to be multiplied by 2^(1/4).] - N. J. A. Sloane, Apr 10 2011
The correct asymptotic for this sequence is a(n) ~ W*(3+sqrt(8))^n*n^(-3/2), where W = (1+sqrt(2))/(2*2^(3/4)*sqrt(Pi)) = 0.404947065905750651736243... Result in book by D. Knuth (p. 539 of 3rd edition, exercise 12) is for sequence b(n), but a(n) = b(n+1)/2. Therefore is asymptotic a(n) ~ b(n) * (3+sqrt(8))/2. - Vaclav Kotesovec, Sep 09 2012
The Hankel transform of this sequence gives A006125 = 1, 1, 2, 8, 64, 1024, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n+1) = Sum_{k=0..floor((n-1)/2)} 2^k * 3^(n-1-2k) * binomial(n-1, 2k) * Catalan(k). This formula counts colored Dyck paths by the same parameter by which Touchard's identity counts ordinary Dyck paths: number of DDUs (U=up step, D=down step). See also Gouyou-Beauchamps reference. - David Callan, Mar 14 2004
From Paul Barry, May 24 2005: (Start)
a(n) = (1/(n+1))*Sum_{k=0..n} C(n+1, k)*C(2n-k, n)*(-1)^k*2^(n-k) [with offset 0].
a(n) = (1/(n+1))*Sum_{k=0..n} C(n+1, k+1)*C(n+k, k)*(-1)^(n-k)*2^k [with offset 0].
a(n) = Sum_{k=0..n} (1/(k+1))*C(n, k)*C(n+k, k)*(-1)^(n-k)*2^k [with offset 0].
a(n) = Sum_{k=0..n} A088617(n, k)*(-1)^(n-k)*2^k [with offset 0]. (End)
E.g.f. of a(n+1) is exp(3*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - Vladeta Jovovic, Mar 31 2004
Reversion of (x-2*x^2)/(1-x) is g.f. offset 1.
For n>=1, a(n) = Sum_{k=0..n} 2^k*N(n, k) where N(n, k) = (1/n)*C(n, k)*C(n, k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 10 2003 [This formula counts colored Dyck paths by number of peaks, which is easy to see because the Narayana numbers count Dyck paths by number of peaks and the number of peaks determines the number of interior ascent vertices.]
a(n) = Sum_{k=0..n} A088617(n, k)*2^k*(-1)^(n-k). - Philippe Deléham, Jan 21 2004
For n > 0, a(n) = (1/(n+1)) * Sum_{k = 0 .. n-1} binomial(2*n-k, n) * binomial(n-1, k). This formula counts colored Dyck paths (as above) by number of white vertices. - David Callan, Mar 14 2004
a(n-1) = (d^(n-1)/dx^(n-1))((1-x)/(1-2*x))^n/n!|_{x=0}. (For a proof see the comment on the unsigned row sums of triangle A111785.)
From Wolfdieter Lang, Sep 12 2005: (Start)
a(n) = (1/n)*Sum_{k=1..n} binomial(n, k)*binomial(n+k, k-1).
a(n) = hypergeom([1-n, n+2], [2], -1), n>=1. (End)
a(n) = hypergeom([1-n, -n], [2], 2) for n>=0. - Peter Luschny, Sep 22 2014
a(m+n+1) = Sum_{k>=0} A110440(m, k)*A110440(n, k)*2^k = A110440(m+n, 0). - Philippe Deléham, Sep 14 2005
Sum over partitions formula (reference Schroeder paper p. 362, eq. (1) II). Number the partitions of n according to Abramowitz-Stegun pp. 831-832 (see reference under A105805) with k=1..p(n)= A000041(n). For n>=1: a(n-1) = Sum_{k=2..p(n)} A048996(n,k)*a(1)^e(k, 1)*a(1)^e(k, 2)*...*a(n-2)^e(k, n-1) if the k-th partition of n in the mentioned order is written as (1^e(k, 1), 2^e(k, 2), ..., (n-1)e(k, n-1)). Note that the first (k=1) partition (n^1) has to be omitted. - Wolfdieter Lang, Aug 23 2005
Starting (1, 3, 11, 45, ...), = row sums of triangle A126216 = A001263 * [1, 2, 4, 8, 16, ...]. - Gary W. Adamson, Nov 30 2007
From Paul Barry, May 15 2009: (Start)
G.f.: 1/(1+x-2x/(1+x-2x/(1+x-2x/(1+x-2x/(1-.... (continued fraction).
G.f.: 1/(1-x/(1-x-x/(1-x-x/(1-x-x/(1-... (continued fraction).
G.f.: 1/(1-x-2x^2/(1-3x-2x^2/(1-3x-2x^2/(1-... (continued fraction). (End)
G.f.: 1 / (1 - x / (1 - 2*x / (1 - x / (1 - 2*x / ... )))). - Michael Somos, May 19 2013
a(n) = (LegendreP(n+1,3)-3*LegendreP(n,3))/(4*n) for n>0. - Mark van Hoeij, Jul 12 2010 [This formula is mentioned in S.-J. Kettle's 1982 letter - see link. N. J. A. Sloane, Jun 13 2015]
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, where M is the production matrix:
1, 1, 0, 0, 0, 0, ...
2, 2, 2, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
2, 2, 2, 2, 2, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
From Gary W. Adamson, Aug 23 2011: (Start)
a(n) is the sum of top row terms of Q^(n-1), where Q is the infinite square production matrix:
1, 2, 0, 0, 0, ...
1, 1, 2, 0, 0, ...
1, 1, 1, 2, 0, ...
1, 1, 1, 1, 2, ...
... (End)
Let h(t) = (1-t)^2/(2*(1-t)^2-1) = 1/(1-(2*t+3*t^2+4*t^3+...)), an o.g.f. for A003480, then for A001003 a(n) = (1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=1. (Cf. A086810.) - Tom Copeland, Sep 06 2011
A006318(n) = 2*a(n) if n>0. - Michael Somos, Mar 31 2007
BINOMIAL transform is A118376 with offset 0. REVERT transform is A153881. INVERT transform is A006318. INVERT transform of A114710. HANKEL transform is A139685. PSUM transform is A104858. - Michael Somos, May 19 2013
G.f.: 1 + x/(Q(0) - x) where Q(k) = 1 + k*(1-x) - x - x*(k+1)*(k+2)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n)=(-1)^n*LegendreP(n,-1,-3)/sqrt(2), n > 0, LegendreP(n,a,b) is the Legendre function. - Karol A. Penson, Jul 06 2013
Integral representation as n-th moment of a positive weight function W(x) = W_a(x) + W_c(x), where W_a(x) = Dirac(x)/2, is the discrete (atomic) part, and W_c(x) = sqrt(8-(x-3)^2)/(4*Pi*x) is the continuous part of W(x) defined on (3 sqrt(8),3+sqrt(8)): a(n) = int( x^n*W_a(x), x=-eps..eps ) + int( x^n*W_c(x), x = 3-sqrt(8)..3+sqrt(8) ), for any eps>0, n>=0. W_c(x) is unimodal, of bounded variation and W_c(3-sqrt(8)) = W_c(3+sqrt(8)) = 0. Note that the position of the Dirac peak (x=0) lies outside support of W_c(x). - Karol A. Penson and Wojciech Mlotkowski, Aug 05 2013
G.f.: 1 + x/G(x) with G(x) = 1 - 3*x - 2*x^2/G(x) (continued fraction). - Nikolaos Pantelidis, Dec 17 2022
Comments