A063931 Duplicate of A001283.
6, 12, 15, 20, 24, 28, 30, 35, 40, 45, 42, 48, 54, 60, 66, 56, 63, 70, 77, 84, 91, 72, 80
Offset: 2
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
From _Omar E. Pol_, Aug 21 2011: (Start) Illustration of initial terms as concentric hexagons: . . o o o o o o . o o . o o o o o o o o o o . o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o . o o o o o o o o o o . o o . o o o o o o . . 6 24 54 . (End)
a033581 = (* 6) . (^ 2) -- Reinhard Zumkeller, Apr 27 2014
seq(6*n^2,n=0..44); # Nathaniel Johnston, Jun 26 2011
6 Range[44]^2 (* Michael De Vlieger, Apr 02 2017 *) LinearRecurrence[{3,-3,1},{0,6,24},50] (* Harvey P. Dale, Jul 03 2017 *)
vector(100,n,6*(n-1)^2) \\ Derek Orr, Mar 11 2015
The triangle T(n, m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 1: 2 2: 6 3 3: 12 8 4 4: 20 15 10 5 5: 30 24 18 12 6 6: 42 35 28 21 14 7 7: 56 48 40 32 24 16 8 8: 72 63 54 45 36 27 18 9 9: 90 80 70 60 50 40 30 20 10 10: 110 99 88 77 66 55 44 33 22 11 11: 132 120 108 96 84 72 60 48 36 24 12 12: 156 143 130 117 104 91 78 65 52 39 26 13 13: 182 168 154 140 126 112 98 84 70 56 42 28 14 14: 210 195 180 165 150 135 120 105 90 75 60 45 30 15 15: 240 224 208 192 176 160 144 128 112 96 80 64 48 32 1 ... Formatted and extended by _Wolfdieter Lang_, Dec 02 2014 -------------------------------------------------------------- Example of general (a,b)-Fibonacci sequence positive integer limits r(a,b) (see the Jan 11 2015 comment above): T(3, 2) = 8, that is a = m = 2 has a solution b = T(3, 2) = 8 with r = r(2,8) = n+1 = 4 = (2 + sqrt(4 + 4*8))/2. The other two solutions with r = 4 appear for b = T(3, m) with m = a = 1 and 3. In general, row n has n times the value n+1 for r, namely r(a=m,b=T(n,m)) = n+1, for m = 1..n. - _Wolfdieter Lang_, Jan 11 2015
The triangle T(n, m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 1: 3 2: 4 10 3: 5 12 21 4: 6 14 24 36 5: 7 16 27 40 55 6: 8 18 30 44 60 78 7: 9 20 33 48 65 84 105 8: 10 22 36 52 70 90 112 136 9: 11 24 39 56 75 96 119 144 171 10: 12 26 42 60 80 102 126 152 180 210 11: 13 28 45 64 85 108 133 160 189 220 253 12: 14 30 48 68 90 114 140 168 198 230 264 300 13: 15 32 51 72 95 120 147 176 207 240 275 312 351 14: 16 34 54 76 100 126 154 184 216 250 286 324 364 406 15: 17 36 57 80 105 132 161 192 225 260 297 336 377 420 465 ... [Formatted and extended by _Wolfdieter Lang_, Dec 02 2014]
a:=n->sum(sum(sum(j-k+1, j=1..n), k=0..n),m=0..n): seq(a(n), n=1..45); # Zerinvary Lajos, May 30 2007
LinearRecurrence[{4,-6,4,-1},{6,27,72,150},50] (* Harvey P. Dale, Dec 14 2017 *)
v=vector(40,i,i*(i+1)/2); s=0; forstep(i=3,40,3,s+=v[i]; print1(s","))
Comments