cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A063931 Duplicate of A001283.

Original entry on oeis.org

6, 12, 15, 20, 24, 28, 30, 35, 40, 45, 42, 48, 54, 60, 66, 56, 63, 70, 77, 84, 91, 72, 80
Offset: 2

Views

Author

Keywords

A033581 a(n) = 6*n^2.

Original entry on oeis.org

0, 6, 24, 54, 96, 150, 216, 294, 384, 486, 600, 726, 864, 1014, 1176, 1350, 1536, 1734, 1944, 2166, 2400, 2646, 2904, 3174, 3456, 3750, 4056, 4374, 4704, 5046, 5400, 5766, 6144, 6534, 6936, 7350, 7776, 8214, 8664, 9126, 9600, 10086, 10584, 11094, 11616
Offset: 0

Views

Author

Keywords

Comments

Number of edges of a complete 4-partite graph of order 4n, K_n,n,n,n. - Roberto E. Martinez II, Oct 18 2001
Number of edges of the complete bipartite graph of order 7n, K_n, 6n. - Roberto E. Martinez II, Jan 07 2002
Number of edges in the line graph of the product of two cycle graphs, each of order n, L(C_n x C_n). - Roberto E. Martinez II, Jan 07 2002
Total surface area of a cube of edge length n. See A000578 for cube volume. See A070169 and A071399 for surface area and volume of a regular tetrahedron and links for the other Platonic solids. - Rick L. Shepherd, Apr 24 2002
a(n) can represented as n concentric hexagons (see example). - Omar E. Pol, Aug 21 2011
Sequence found by reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A003154 in the same spiral. - Omar E. Pol, Sep 08 2011
Together with 1, numbers m such that floor(2*m/3) and floor(3*m/2) are both squares. Example: floor(2*150/3) = 100 and floor(3*150/2) = 225 are both squares, so 150 is in the sequence. - Bruno Berselli, Sep 15 2014
a(n+1) gives the number of vertices in a hexagon-like honeycomb built from A003215(n) congruent regular hexagons (see link). Example: a hexagon-like honeycomb consisting of 7 congruent regular hexagons has 1 core hexagon inside a perimeter of six hexagons. The perimeter has 18 vertices. The core hexagon has 6 vertices. a(2) = 18 + 6 = 24 is the total number of vertices. - Ivan N. Ianakiev, Mar 11 2015
a(n) is the area of the Pythagorean triangle whose sides are (3n, 4n, 5n). - Sergey Pavlov, Mar 31 2017
More generally, if k >= 5 we have that the sequence whose formula is a(n) = (2*k - 4)*n^2 is also the sequence found by reading the line from 0, in the direction 0, (2*k - 4), ..., in the square spiral whose vertices are the generalized k-gonal numbers. In this case k = 5. - Omar E. Pol, May 13 2018
The sequence also gives the number of size=1 triangles within a match-made hexagon of size n. - John King, Mar 31 2019
For hexagons, the number of matches required is A045945; thus number of size=1 triangles is A033581; number of larger triangles is A307253 and total number of triangles is A045949. See A045943 for analogs for Triangles; see A045946 for analogs for Stars. - John King, Apr 04 2019

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms as concentric hexagons:
.
.                                 o o o o o o
.                                o           o
.              o o o o          o   o o o o   o
.             o       o        o   o       o   o
.   o o      o   o o   o      o   o   o o   o   o
.  o   o    o   o   o   o    o   o   o   o   o   o
.   o o      o   o o   o      o   o   o o   o   o
.             o       o        o   o       o   o
.              o o o o          o   o o o o   o
.                                o           o
.                                 o o o o o o
.
.    6            24                   54
.
(End)
		

Crossrefs

Bisection of A032528. Central column of triangle A001283.
Cf. A017593 (first differences).

Programs

Formula

a(n) = A000290(n)*6. - Omar E. Pol, Dec 11 2008
a(n) = A001105(n)*3 = A033428(n)*2. - Omar E. Pol, Dec 13 2008
a(n) = 12*n + a(n-1) - 6, with a(0)=0. - Vincenzo Librandi, Aug 05 2010
G.f.: 6*x*(1+x)/(1-x)^3. - Colin Barker, Feb 14 2012
For n > 0: a(n) = A005897(n) - 2. - Reinhard Zumkeller, Apr 27 2014
a(n) = 3*floor(1/(1-cos(1/n))) = floor(1/(1-n*sin(1/n))) for n > 0. - Clark Kimberling, Oct 08 2014
a(n) = t(4*n) - 4*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(4*n) - 4*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/36.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/72 (A086729).
Product_{n>=1} (1 + 1/a(n)) = sqrt(6)*sinh(Pi/sqrt(6))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(6)*sin(Pi/sqrt(6))/Pi. (End)
E.g.f.: 6*exp(x)*x*(1 + x). - Stefano Spezia, Aug 19 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2001

A063929 Radius of A-excircle of Pythagorean triangle with a = (n+1)^2 - m^2, b = 2*(n+1)*m and c = (n+1)^2 + m^2.

Original entry on oeis.org

2, 6, 3, 12, 8, 4, 20, 15, 10, 5, 30, 24, 18, 12, 6, 42, 35, 28, 21, 14, 7, 56, 48, 40, 32, 24, 16, 8, 72, 63, 54, 45, 36, 27, 18, 9, 90, 80, 70, 60, 50, 40, 30, 20, 10, 110, 99, 88, 77, 66, 55, 44, 33, 22, 11, 132, 120, 108, 96, 84, 72, 60, 48, 36, 24, 12, 156, 143, 130, 117
Offset: 1

Views

Author

Floor van Lamoen, Aug 21 2001

Keywords

Comments

From Wolfdieter Lang, Dec 03 2014: (Start)
For excircles and their radii see the Eric W. Weisstein links. Here the circle radius with center J_A is considered.
Note that not all Pythagorean triangles are covered, e.g., the nonprimitive one (9, 12, 15) does not appear. However, the nonprimitive one (8, 6, 10) does appear as (n, m) = (2, 1). (End)
This triangle T appears also in the problem of finding all positive integer solutions for a and b of the general Fibonacci sequence F(a,b;k+1) = a*F(a,b;k) + b*F(a,b;k-1) (with some inputs F(a,b;0) and F(a,b;1)) such that the limit r = r(a,b) = F(a,b;k+1)/F(a,b;k) for k -> infinity becomes a positive integer r = (a + sqrt(a^2 + 4*b))/2. Namely, for any a = m >= 1 there are infinitely many b solutions b = T(n,m) = (n+1)*(n+1-m) for n >= m. The limit is r(a,b) = n+1 for a = m = 1..n, which is A003057 read as a triangle with offset 1. This entry was motivated by A249973 and A249974 by Kerry Mitchell concerned with real values of r. - Wolfdieter Lang, Jan 11 2015

Examples

			The triangle T(n, m) begins:
n\m   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 ...
1:    2
2:    6   3
3:   12   8   4
4:   20  15  10  5
5:   30  24  18  12   6
6:   42  35  28  21  14   7
7:   56  48  40  32  24  16   8
8:   72  63  54  45  36  27  18   9
9:   90  80  70  60  50  40  30  20  10
10: 110  99  88  77  66  55  44  33  22 11
11: 132 120 108  96  84  72  60  48  36 24 12
12: 156 143 130 117 104  91  78  65  52 39 26 13
13: 182 168 154 140 126 112  98  84  70 56 42 28 14
14: 210 195 180 165 150 135 120 105  90 75 60 45 30 15
15: 240 224 208 192 176 160 144 128 112 96 80 64 48 32  1
... Formatted and extended by _Wolfdieter Lang_, Dec 02 2014
--------------------------------------------------------------
Example of general (a,b)-Fibonacci sequence positive integer limits r(a,b) (see the Jan 11 2015 comment above):
T(3, 2) = 8, that is a = m = 2 has a solution b = T(3, 2) = 8 with r = r(2,8) = n+1 = 4 = (2 + sqrt(4 + 4*8))/2. The other two solutions with r = 4 appear for b = T(3, m) with m = a = 1 and 3. In general, row n has n times the value n+1 for r, namely r(a=m,b=T(n,m)) = n+1, for m = 1..n. - _Wolfdieter Lang_, Jan 11 2015
		

Crossrefs

Cf. A003991 (incircle radius), A063930 (B-excircle radius), A001283 (C-excircle radius), A055096 (circumcircle diameter).

Formula

T(n, m) = (n+1)(n-m+1), n >= m >= 1.
T(n, m) = rho_A = sqrt(s*(s-b)*(s-c)/(s-a)) with the semiperimeter s = (a + b + c)/2 and the substituted a, b, c values as given in the name. - Wolfdieter Lang, Dec 02 2014

Extensions

Edited: Crossreferences commented and A055096 added by Wolfdieter Lang, Dec 02 2014

A063930 Radius of B-excircle of Pythagorean triangle with a=(n+1)^2-m^2, b=2*(n+1)*m and c=(n+1)^2+m^2.

Original entry on oeis.org

3, 4, 10, 5, 12, 21, 6, 14, 24, 36, 7, 16, 27, 40, 55, 8, 18, 30, 44, 60, 78, 9, 20, 33, 48, 65, 84, 105, 10, 22, 36, 52, 70, 90, 112, 136, 11, 24, 39, 56, 75, 96, 119, 144, 171, 12, 26, 42, 60, 80, 102, 126, 152, 180, 210, 13, 28, 45, 64, 85, 108, 133, 160, 189, 220
Offset: 1

Views

Author

Floor van Lamoen, Aug 21 2001

Keywords

Comments

See a comment for excircle and exradius on A063929, also for links.

Examples

			The triangle T(n, m) begins:
n\m  1  2  3  4   5   6   7   8   9  10  11  12  13  14  15 ...
1:   3
2:   4 10
3:   5 12 21
4:   6 14 24 36
5:   7 16 27 40  55
6:   8 18 30 44  60  78
7:   9 20 33 48  65  84 105
8:  10 22 36 52  70  90 112 136
9:  11 24 39 56  75  96 119 144 171
10: 12 26 42 60  80 102 126 152 180 210
11: 13 28 45 64  85 108 133 160 189 220 253
12: 14 30 48 68  90 114 140 168 198 230 264 300
13: 15 32 51 72  95 120 147 176 207 240 275 312 351
14: 16 34 54 76 100 126 154 184 216 250 286 324 364 406
15: 17 36 57 80 105 132 161 192 225 260 297 336 377 420 465
...
[Formatted and extended by _Wolfdieter Lang_, Dec 02 2014]
		

Crossrefs

Cf. A003991 (inradius), A063929 (A-exradius), A001283 (C-exradius), A055096 (circumradius diameter).

Formula

T(n,m) = m(n+m+1), n >= m >= 1.
T(n,m) = sqrt(s*(s-a)*(s-c)/(s-b)) with the semiperimeter s = (a + b + c)/2, and the a, b and c values given in the name substituted. - Wolfdieter Lang, Dec 02 2014

Extensions

Crossreferences commented and A055096 added by Wolfdieter Lang, Dec 02 2014

A085788 Partial sums of n 3-spaced triangular numbers beginning with t(3), e.g., a(2) = t(3)+t(6) = 6+21 = 27.

Original entry on oeis.org

6, 27, 72, 150, 270, 441, 672, 972, 1350, 1815, 2376, 3042, 3822, 4725, 5760, 6936, 8262, 9747, 11400, 13230, 15246, 17457, 19872, 22500, 25350, 28431, 31752, 35322, 39150, 43245, 47616, 52272, 57222, 62475, 68040, 73926, 80142, 86697, 93600, 100860, 108486
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Crossrefs

Row sums of triangle A001283.
Cf. A254407. - Bruno Berselli, Jan 30 2015

Programs

  • Maple
    a:=n->sum(sum(sum(j-k+1, j=1..n), k=0..n),m=0..n): seq(a(n), n=1..45); # Zerinvary Lajos, May 30 2007
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{6,27,72,150},50] (* Harvey P. Dale, Dec 14 2017 *)
  • PARI
    v=vector(40,i,i*(i+1)/2); s=0; forstep(i=3,40,3,s+=v[i]; print1(s","))

Formula

a(n) = (3/2)*n*(n+1)^2 = 3*A006002(n).
a(n) = Sum_{j=1..n} (j+n+1)*(n+1). - Zerinvary Lajos, Sep 10 2006
From Colin Barker, Mar 17 2014: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: 3*x*(x+2)/(x-1)^4. (End)
E.g.f.: 3*exp(x)*x*(1 + x)*(4 + x)/2. - Elmo R. Oliveira, Aug 14 2025

Extensions

Edited and more terms from Michel Marcus, Mar 17 2014
Showing 1-5 of 5 results.