A003057 n appears n - 1 times.
2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14
Offset: 2
Examples
(a,b)-Fibonacci ratio limits r(a,b) (see a comment above): as a triangle with offset 1 one has t(3, m) = 4 for m = 1, 2, 3. This gives the limits r(a = m,b = A063929(3, m)), i.e., r(1,12) = r(2,8) = r(3,4) = 4 (and the limit 4 appears only for these three (a,b) values). - _Wolfdieter Lang_, Jan 12 2015
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..10000
- Allan Bickle, 2-Tone coloring of joins and products of graphs, Congr. Numer. 217 (2013), 171-190.
- Michael Somos, Sequences used for indexing triangular or square arrays
Programs
-
Magma
[Round(Sqrt(2*(n-1)))+1: n in [2..60]]; // Vincenzo Librandi, Jun 23 2011
-
Maple
seq(n$(n-1),n=2..15); # Robert Israel, Jan 12 2015
-
Mathematica
Flatten[Table[PadRight[{},n-1,n],{n,15}]] (* Harvey P. Dale, Feb 26 2012 *)
-
PARI
t1(n)=floor(3/2+sqrt(2*n-2)) /* A003057 */
-
PARI
t2(n)=n-1-binomial(floor(1/2+sqrt(2*n-2)),2) /* A002260(n-2) */
-
Python
from math import isqrt def A003057(n): return (k:=isqrt(m:=n-1<<1))+int((m<<2)>(k<<2)*(k+1)+1)+1 # Chai Wah Wu, Jul 26 2022
Formula
a(n) = A002024(n-1) + 1 = floor(sqrt(2*(n - 1)) + 1/2) + 1 = round(sqrt(2*(n - 1))) + 1. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 21 2003
a(n) = ceiling((sqrt(8*n - 7) + 1)/2). - Reinhard Zumkeller, Aug 28 2001, modified by Frank Ruskey, Nov 06 2007, restored by M. F. Hasler, Jan 13 2015
a(n) = A080036(n-1) - (n - 1) for n >= 2. - Jaroslav Krizek, Jun 19 2009
G.f.: (2*x^2 + Sum_{n>=2} x^(n*(n - 1)/2 + 2))/(1 - x) = (x^2 + x^(15/8)*theta_2(0,sqrt(x))/2)/(1 - x) where theta_2 is the second Jacobi theta function. - Robert Israel, Jan 12 2015
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 21 2003
Comments