A001615 Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).
1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24, 24, 18, 36, 20, 36, 32, 36, 24, 48, 30, 42, 36, 48, 30, 72, 32, 48, 48, 54, 48, 72, 38, 60, 56, 72, 42, 96, 44, 72, 72, 72, 48, 96, 56, 90, 72, 84, 54, 108, 72, 96, 80, 90, 60, 144, 62, 96, 96, 96, 84, 144, 68, 108, 96
Offset: 1
Examples
Let L = <V,W> be a 2-dimensional lattice. The 6 primitive sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V+W,2W>, <2V,2W+V>. Compare A000203. G.f. = x + 3*x^2 + 4*x^3 + 6*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 12*x^8 + 12*x^9 + ...
References
- Tom Apostol, Intro. to Analyt. Number Theory, page 71, Problem 11, where this is called phi_1(n).
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 228.
- R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 220.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
- B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
- G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (1).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe and N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- O. Bordelles and B. Cloitre, An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions, J. Int. Seq. 16 (2013) #13.6.3.
- Harriet Fell, Morris Newman, and Edward Ordman, Tables of genera of groups of linear fractional transformations, J. Res. Nat. Bur. Standards Sect. B 67B 1963 61-68.
- M. Hampejs, N. Holighaus, L. Toth and C. Wiesmeyr, Representing and counting the subgroups of the group Z_m X Z_n, arXiv:1211.1797 [math.GR], 2012.
- W. Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications 14:2 (2015), 73-88.
- F. A. Lewis et al., Problem 4002, Amer. Math. Monthly, Vol. 49, No. 9, Nov. 1942, pp. 618-619.
- E. Pérez Herrero, Recycling Hardy & Wright, Average Order of Dedekind Psi Function, Psychedelic Geometry Blogspot.
- Michel Planat, Riemann hypothesis from the Dedekind psi function, arXiv:1010.3239 [math.GM], 2010.
- Patrick Sole and Michel Planat, Extreme values of the Dedekind Psi function, to appear in Journal of Combinatorics and Number Theory, arXiv:1011.1825 [math.NT], 2010-2011.
- Eric Weisstein's World of Mathematics, Dedekind Function
- Wikipedia, Dedekind psi function
- Index entries for "core" sequences
- Index entries for sequences related to sublattices
Crossrefs
Other sequences that count lattices/sublattices: A000203 (with primitive condition removed), A003050 (hexagonal lattice instead), A003051, A054345, A160889, A160891.
Cf. A301594.
Cf. A063659 (Möbius transform), A082020 (average order), A156303 (Euler transform), A173290 (partial sums), A175836 (partial products), A203444 (range).
Cf. A210523 (record values).
Programs
-
Haskell
import Data.Ratio (numerator) a001615 n = numerator (fromIntegral n * (product $ map ((+ 1) . recip . fromIntegral) $ a027748_row n)) -- Reinhard Zumkeller, Jun 03 2013, Apr 12 2012
-
Magma
m:=75; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[MoebiusMu(k)^2*x^k/(1-x^k)^2: k in [1..2*m]]) )); // G. C. Greubel, Nov 23 2018 -
Maple
A001615 := proc(n) n*mul((1+1/i[1]),i=ifactors(n)[2]) end; # Mark van Hoeij, Apr 18 2012
-
Mathematica
Join[{1}, Table[n Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]), {n, 2, 100}]] (* T. D. Noe, Jun 11 2006 *) Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 100}] (* Jan Mangaldan, Aug 22 2013 *) a[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; (* Michael Somos, Jan 10 2015 *) Table[n Product[1 + 1/p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 08 2021 *) Table[n DivisorSum[n, MoebiusMu[#]^2/# &], {n, 20}] (* Eric W. Weisstein, Mar 09 2025 *)
-
PARI
{a(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n])};
-
PARI
{a(n) = if( n<1, 0, n * sumdiv( n, d, moebius(d)^2 / d))}; /* Michael Somos, Nov 10 2006 */
-
PARI
a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2] + f[i,1]^(f[i,2]-1)) \\ Charles R Greathouse IV, Aug 22 2013
-
PARI
a(n) = n * sumdivmult(n, d, issquarefree(d)/d) \\ Charles R Greathouse IV, Sep 09 2014
-
Python
from math import prod from sympy import primefactors def A001615(n): plist = primefactors(n) return n*prod(p+1 for p in plist)//prod(plist) # Chai Wah Wu, Jun 03 2021
-
Sage
def A001615(n) : return n*mul(1+1/p for p in prime_divisors(n)) [A001615(n) for n in (1..69)] # Peter Luschny, Jun 10 2012
Formula
Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s). - Michael Somos, May 19 2000
Multiplicative with a(p^e) = (p+1)*p^(e-1). - David W. Wilson, Aug 01 2001
a(n) = n*Sum_{d|n} mu(d)^2/d, Dirichlet convolution of A008966 and A000027. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2 * d. - Joerg Arndt, Jul 06 2011
From Enrique Pérez Herrero, Aug 22 2010: (Start)
a(n) = J_2(n)/J_1(n) = J_2(n)/phi(n) = A007434(n)/A000010(n), where J_k is the k-th Jordan Totient Function.
a(n) = (1/phi(n))*Sum_{d|n} mu(n/d)*d^(b-1), for b=3. (End)
a(n) = n / Sum_{d|n} mu(d)/a(d). - Enrique Pérez Herrero, Jun 06 2012
a(n^k)= n^(k-1) * a(n). - Enrique Pérez Herrero, Jan 05 2013
a(n) = Sum_{d^2 | n} mu(d) * A000203(n/d^2). - Álvar Ibeas, Dec 20 2014
The average order of a(n) is 15*n/Pi^2. - Enrique Pérez Herrero, Jan 14 2012. See Apostol. - N. J. A. Sloane, Sep 04 2017
G.f.: Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 25 2018
a(n) = Sum_{d|n} 2^omega(d) * phi(n/d), Dirichlet convolution of A034444 and A000010. - Daniel Suteu, Mar 09 2019
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} 2^omega(gcd(n,k)).
a(n) = Sum_{k=1..n} 2^omega(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^2). - Ridouane Oudra, Mar 26 2025
Extensions
More terms from Olivier Gérard, Aug 15 1997
Comments