A001622 Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.
1, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8, 4, 7, 5
Offset: 1
Examples
1.6180339887498948482045868343656381177203091798057628621...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 112, 123, 184, 190, 203.
- Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993 - Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1975, pages 76-77, 1993.
- Richard A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific, River Edge, NJ, 1997.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, Section 1.2.
- Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, Simon & Schuster, NY, 1961.
- Martin Gardner, Weird Water and Fuzzy Logic: More Notes of a Fringe Watcher, "The Cult of the Golden Ratio", Chapter 9, Prometheus Books, 1996, pages 90-97.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 287.
- H. E. Huntley, The Divine Proportion, Dover, NY, 1970.
- Mario Livio, The Golden Ratio, Broadway Books, NY, 2002. [see the review by G. Markowsky in the links field]
- Gary B. Meisner, The Golden Ratio: The Divine Beauty of Mathematics, Race Point Publishing (The Quarto Group), 2018. German translation: Der Goldene Schnitt, Librero, 2023.
- Scott Olsen, The Golden Section, Walker & Co., NY, 2006.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 137-139.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Hans Walser, The Golden Section, Math. Assoc. of Amer. Washington DC 2001.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 36-40.
- Claude-Jacques Willard, Le nombre d'or, Magnard, Paris, 1987.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..100000
- Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3 (Fall 1998), p. 176; Solution, ibid., Vol. 12, No. 1 (Winter 2000), pp. 61-62.
- John Baez, This week's finds in mathematical physics, Week 203.
- John Baez, The Rankin Lectures 2008, My Favorite Numbers: 5. [video]
- Murray Berg, Phi, the golden ratio (to 4599 decimal places) and Fibonacci numbers, Fib. Quart., Vol. 4, No. 2 (1961), pp. 157-162.
- Ömür Deveci, Zafer Adıgüzel and Taha Doğan, On the Generalized Fibonacci-circulant-Hurwitz numbers, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 1, 179-190.
- T. Eveilleau, Le nombre d'or (in French).
- Abdul Gaffar, Anand B. Joshi, Sonali Singh, and Keerti Srivastava, A high capacity multi-image steganography technique based on golden ratio and non-subsampled contourlet transform, Multimedia Tools and Applications (2022).
- Gutenberg Project, The golden ratio to 20000 places.
- ICON Project, The golden ratio to 50000 places.
- The IMO Compendium, Problem 4, 7th Canadian Mathematical Olympiad 1975.
- L. B. W. Jolley, Summation of Series, Dover, 1961
- Franklin H. J. Kenter, It's good to be phi: a solution to a problem of Gosper and Knuth, arXiv:1712.04856 [math.HO], 2017.
- Clark Kimberling, Two kinds of golden triangles, generalized to match continued fractions, Journal for Geometry and Graphics, Vol. 11 (2007), pp. 165-171.
- Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
- Ron Knott, Fibonacci numbers and the golden section.
- Wolfdieter Lang, A list of representative simple difference sets of the Singer type for small orders m, Karlsruher Institut für Technologie (Karlsruhe, Germany 2020).
- Wolfdieter Lang, Cantor's List of Real Algebraic Numbers of Heights 1 to 7, arXiv:2307.10645 [math.NT], 2023.
- Simon Litsyn and Vladimir Shevelev, Irrational Factors Satisfying the Little Fermat Theorem, International Journal of Number Theory, Vol. 1, No. 4 (2005), pp. 499-512.
- Gary B. Meisner, Phi, The Golden Number.
- George Markowsky, Misconceptions About the Golden Ratio, College Mathematics Journal, 23:1 (January 1992), 2-19.
- George Markowsky, Book review: The Golden Ratio, Notices of the AMS, 52:3 (March 2005), 344-347.
- R. S. Melham and A. G. Shannon, Inverse Trigonometric Hyperbolic Summation Formulas Involving Generalized Fibonacci Numbers, The Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 32-40.
- Jean-Christophe Michel, Le nombre d'or.
- J. J. O'Connor and E. F. Robertson, The Golden ratio.
- Hugo Pfoertner, 1 million digits of phi, Computed using A. J. Yee's y-cruncher.
- Simon Plouffe, Plouffe's Inverter, The golden ratio to 10 million digits. [Only announcement, file truncated]
- Simon Plouffe, The golden ratio:(1+sqrt(5))/2 to 20000 places.
- Fred Richman, Fibonacci sequence with multiprecision Java, Successive approximations to phi from ratios of consecutive Fibonacci numbers.
- Herman P. Robinson, The CSR Function, Popular Computing (Calabasas, CA), Vol. 4, No. 35 (Feb 1976), pages PC35-3 to PC35-4. Annotated and scanned copy.
- E. F. Schubert, The Fibonacci series.
- Vladimir Shevelev, A property of n-bonacci constant, Seqfan (Mar 23 2014).
- Jonathan Sondow, Evaluation of Tachiya's algebraic infinite products involving Fibonacci and Lucas numbers, Diophantine Analysis and Related Fields 2011 - AIP Conference Proceedings, Vol. 1385, pp. 97-100; arXiv:1106.4246 [math.NT], 2011.
- Matthew R. Watkins, The "Golden Mean" in number theory.
- Eric Weisstein's World of Mathematics, Golden Ratio.
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
- Eric Weisstein's World of Mathematics, Pisot Number.
- Eric Weisstein's World of Mathematics, Silver Ratio.
- Wikipedia, Mark Barr.
- Wikipedia, Golden ratio.
- Wikipedia, Kronecker-Weber theorem.
- Wikipedia, Metallic mean.
- Alexander J. Yee, y-cruncher - A Multi-Threaded Pi-Program.
- Index entries for algebraic numbers, degree 2.
- Index to sequences related to Olympiads.
Crossrefs
Programs
-
Maple
Digits:=1000; evalf((1+sqrt(5))/2); # Wesley Ivan Hurt, Nov 01 2013
-
Mathematica
RealDigits[(1 + Sqrt[5])/2, 10, 130] (* Stefan Steinerberger, Apr 02 2006 *) RealDigits[ Exp[ ArcSinh[1/2]], 10, 111][[1]] (* Robert G. Wilson v, Mar 01 2008 *) RealDigits[GoldenRatio,10,120][[1]] (* Harvey P. Dale, Oct 28 2015 *)
-
PARI
default(realprecision, 20080); x=(1+sqrt(5))/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b001622.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
-
PARI
/* Digit-by-digit method: write it as 0.5+sqrt(1.25) and start at hundredths digit */ r=11; x=400; print(1); print(6); for(dig=1, 110, {d=0; while((20*r+d)*d <= x, d++); d--; /* while loop overshoots correct digit */ print(d); x=100*(x-(20*r+d)*d); r=10*r+d}) \\ Michael B. Porter, Oct 24 2009
-
PARI
a(n) = floor(10^(n-1)*(quadgen(5))%10); alist(len) = digits(floor(quadgen(5)*10^(len-1))); \\ Chittaranjan Pardeshi, Jun 22 2022
-
Python
from sympy import S def alst(n): # truncate extra last digit to avoid rounding return list(map(int, str(S.GoldenRatio.n(n+1)).replace(".", "")))[:-1] print(alst(105)) # Michael S. Branicky, Jan 06 2021
Formula
Equals Sum_{n>=2} 1/A064170(n) = 1/1 + 1/2 + 1/(2*5) + 1/(5*13) + 1/(13*34) + ... - Gary W. Adamson, Dec 15 2007
Equals Hypergeometric2F1([1/5, 4/5], [1/2], 3/4) = 2*cos((3/5)*arcsin(sqrt(3/4))). - Artur Jasinski, Oct 26 2008
From Hieronymus Fischer, Jan 02 2009: (Start)
The fractional part of phi^n equals phi^(-n), if n is odd. For even n, the fractional part of phi^n is equal to 1-phi^(-n).
General formula: Provided x>1 satisfies x-x^(-1)=floor(x), where x=phi for this sequence, then:
for odd n: x^n - x^(-n) = floor(x^n), hence fract(x^n) = x^(-n),
for even n: x^n + x^(-n) = ceiling(x^n), hence fract(x^n) = 1 - x^(-n),
for all n>0: x^n + (-x)^(-n) = round(x^n).
x=phi is the minimal solution to x - x^(-1) = floor(x) (where floor(x)=1 in this case).
Other examples of constants x satisfying the relation x - x^(-1) = floor(x) include A014176 (the silver ratio: where floor(x)=2) and A098316 (the "bronze" ratio: where floor(x)=3). (End)
Equals 2*cos(Pi/5) = e^(i*Pi/5) + e^(-i*Pi/5). - Eric Desbiaux, Mar 19 2010
The solutions to x-x^(-1)=floor(x) are determined by x=(1/2)*(m+sqrt(m^2+4)), m>=1; x=phi for m=1. In terms of continued fractions the solutions can be described by x=[m;m,m,m,...], where m=1 for x=phi, and m=2 for the silver ratio A014176, and m=3 for the bronze ratio A098316. - Hieronymus Fischer, Oct 20 2010
Sum_{n>=1} x^n/n^2 = Pi^2/10 - (log(2)*sin(Pi/10))^2 where x = 2*sin(Pi/10) = this constant here. [Jolley, eq 360d]
phi = 1 + Sum_{k>=1} (-1)^(k-1)/(F(k)*F(k+1)), where F(n) is the n-th Fibonacci number (A000045). Proof. By Catalan's identity, F^2(n) - F(n-1)*F(n+1) = (-1)^(n-1). Therefore,(-1)^(n-1)/(F(n)*F(n+1)) = F(n)/F(n+1) - F(n-1)/F(n). Thus Sum_{k=1..n} (-1)^(k-1)/(F(k)*F(k+1)) = F(n)/F(n+1). If n goes to infinity, this tends to 1/phi = phi - 1. - Vladimir Shevelev, Feb 22 2013
Let P(q) = Product_{k>=1} (1 + q^(2*k-1)) (the g.f. of A000700), then A001622 = exp(Pi/6) * P(exp(-5*Pi)) / P(exp(-Pi)). - Stephen Beathard, Oct 06 2013
phi = i^(2/5) + i^(-2/5) = ((i^(4/5))+1) / (i^(2/5)) = 2*(i^(2/5) - (sin(Pi/5))i) = 2*(i^(-2/5) + (sin(Pi/5))i). - Jaroslav Krizek, Feb 03 2014
phi = sqrt(2/(3 - sqrt(5))) = sqrt(2)/A094883. This follows from the fact that ((1 + sqrt(5))^2)*(3 - sqrt(5)) = 8, so that ((1 + sqrt(5))/2)^2 = 2/(3 - sqrt(5)). - Geoffrey Caveney, Apr 19 2014
exp(arcsinh(cos(Pi/2-log(phi)*i))) = exp(arcsinh(sin(log(phi)*i))) = (sqrt(3) + i) / 2. - Geoffrey Caveney, Apr 23 2014
exp(arcsinh(cos(Pi/3))) = phi. - Geoffrey Caveney, Apr 23 2014
cos(Pi/3) + sqrt(1 + cos(Pi/3)^2). - Geoffrey Caveney, Apr 23 2014
2*phi = z^0 + z^1 - z^2 - z^3 + z^4, where z = exp(2*Pi*i/5). See the Wikipedia Kronecker-Weber theorem link. - Jonathan Sondow, Apr 24 2014
phi = 1/2 + sqrt(1 + (1/2)^2). - Geoffrey Caveney, Apr 25 2014
Phi is the limiting value of the iteration of x -> sqrt(1+x) on initial value a >= -1. - Chayim Lowen, Aug 30 2015
From Isaac Saffold, Feb 28 2018: (Start)
1 = Sum_{k=0..n} binomial(n, k) / phi^(n+k) for all nonnegative integers n.
1 = Sum_{n>=1} 1 / phi^(2n-1).
1 = Sum_{n>=2} 1 / phi^n.
phi = Sum_{n>=1} 1/phi^n. (End)
From Christian Katzmann, Mar 19 2018: (Start)
phi = Sum_{n>=0} (15*(2*n)! + 8*n!^2)/(2*n!^2*3^(2*n+2)).
phi = 1/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
phi = Product_{k>=1} (1 + 2/(-1 + 2^k*(sqrt(4+(1-2/2^k)^2) + sqrt(4+(1-1/2^k)^2)))). - Gleb Koloskov, Jul 14 2021
Equals Product_{k>=1} (Fibonacci(3*k)^2 + (-1)^(k+1))/(Fibonacci(3*k)^2 + (-1)^k) (Melham and Shannon, 1995). - Amiram Eldar, Jan 15 2022
From Michal Paulovic, Jan 16 2023: (Start)
Equals the real part of 2 * e^(i * Pi / 5).
Equals 2 * sin(3 * Pi / 10) = 2*A019863.
Equals -2 * sin(37 * Pi / 10).
Equals 1 + 1 / (1 + 1 / (1 + 1 / (1 + 1 / (1 + 1 / ...)))).
Equals (2 + 3 * (2 + 3 * (2 + 3 * ...)^(1/4))^(1/4))^(1/4).
Equals (1 + 2 * (1 + 2 * (1 + 2 * ...)^(1/3))^(1/3))^(1/3).
Equals (1 + phi + (1 + phi + (1 + phi + ...)^(1/3))^(1/3))^(1/3).
Equals 13/8 + Sum_{k=0..oo} (-1)^(k+1)*(2*k+1)!/((k+2)!*k!*4^(2*k+3)).
(End)
The previous formula holds for integer n, with F(-n) = (-1)^(n+1)*F(n), for n >= 0, with F(n) = A000045(n), for n >= 0. phi^n are integers in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Sep 16 2023
Equals Product_{k>=0} ((5*k + 2)*(5*k + 3))/((5*k + 1)*(5*k + 4)). - Antonio Graciá Llorente, Feb 24 2024
From Antonio Graciá Llorente, Apr 21 2024: (Start)
Equals Product_{k>=1} phi^(-2^k) + 1, with phi = A001622.
Equals Product_{k>=0} ((5^(k+1) + 1)*(5^(k-1/2) + 1))/((5^k + 1)*(5^(k+1/2) + 1)).
Equals Product_{k>=0} ((5*k + 7)*(5*k + 1 + (-1)^k))/((5*k + 1)*(5*k + 7 + (-1)^k)).
Equals Product_{k>=0} ((10*k + 3)*(10*k + 5)*(10*k + 8)^2)/((10*k + 2)*(10*k + 4)*(10*k + 9)^2).
Equals Product_{k>=5} 1 + 1/(Fibonacci(k) - (-1)^k).
Equals Product_{k>=2} 1 + 1/Fibonacci(2*k).
Equals Product_{k>=2} (Lucas(k)^2 + (-1)^k)/(Lucas(k)^2 - 4*(-1)^k). (End)
Extensions
Additional links contributed by Lekraj Beedassy, Dec 23 2003
More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 24 2004
More terms from Stefan Steinerberger, Apr 02 2006
Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009
Edited by M. F. Hasler, Feb 24 2014
Comments