A002110 Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.
1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090
Offset: 0
Examples
a(9) = 23# = 2*3*5*7*11*13*17*19*23 = 223092870 divides the difference 5283234035979900 in the arithmetic progression of 26 primes A204189. - _Jonathan Sondow_, Jan 15 2012
References
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 49.
- P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 4.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
- D. Wolfe and S. Hirshberg, Underspecified puzzles, in Tribute to A Mathemagician, Peters, 2005, pp. 73-74.
Links
- Alex Ermolaev, Table of n, a(n) for n = 0..350 (terms up to a(100) from T. D. Noe)
- Iskander Aliev, Jesús De Loera, Fritz Eisenbrand, Timm Oertel, and Robert Weismantel, The Support of Integer Optimal Solutions, arXiv:1712.08923 [math.OC], 2017.
- C. K. Caldwell, The Prime Glossary, Primorial.
- Geoffrey Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, arXiv:1112.6010 [math.NT], 2011-2012; Ramanujan J., 29 (2012), 359-384.
- Harvey Dubner, Factorial and primorial primes, J. Rec. Math., Vol. 19, No. 3 (1987), pp. 197-203. (Annotated scanned copy)
- F. Ellermann, Illustration for A002110, A005867, A038110, A060753.
- S. W. Golomb, The evidence for Fortune's conjecture, Math. Mag. 54 (1981), 209-210.
- D. J. Greenhoe, MRA-Wavelet subspace architecture for logic, probability, and symbolic sequence processing, 2014.
- Daniel J. Greenhoe, Frames and Bases: Structure and Design, Version 0.20, Signal Processing ABCs series (2019) Vol. 4, pp. 7, 81.
- Daniel J. Greenhoe, A Book Concerning Transforms, Version 0.10, Signal Processing ABCs series (2019) Vol. 5, see page 7.
- A. W. Lin and S. Zhou, A linear-time algorithm for the orbit problem over cyclic groups, preprint, CONCUR 2014 - Concurrency Theory, Volume 8704 of the series Lecture Notes in Computer Science pp. 327-341.
- A. W. Lin and S. Zhou, A linear-time algorithm for the orbit problem over cyclic groups, CONCUR 2014 - Concurrency Theory, Lecture Notes in Computer Science, Volume 8704, 2014, pp. 327-341.
- F. E. Masat, Letter to N. J. A. Sloane with attachment: "A note on prime number sequences" (unpublished manuscript), Apr. 1991.
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv:1202.3670 [math.HO], 2012.
- Thomas Morrill, Further Development of "Non-Pythagorean" Musical Scales Based on Logarithms, arXiv:1804.08067 [math.HO], 2018.
- J.-L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory 17, no.3 (1983), 375-388.
- Patrick Sole and Michel Planat, The Robin inequality for 7-free integers, INTEGERS, 2011, #A65.
- Andrew V. Sutherland, Order Computations in Generic Groups, Ph. D. Dissertation, Math. Dept., M.I.T., 2007.
- G. Villemin's Almanach of Numbers, Primorielle.
- Eric Weisstein's World of Mathematics, Primorial.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Jan. 1994.
- Index to divisibility sequences
- Index entries for "core" sequences
- Index entries for sequences related to primorial base
- Index entries for sequences related to primorial numbers
Crossrefs
A034386 gives the second version of the primorial numbers.
Cf. A001615, A002182, A002201, A003418, A005235, A006862, A034444 (unitary divisors), A034448, A034387, A033188, A035345, A035346, A036691 (compositorial numbers), A049345 (primorial base representation), A057588, A060735 (and integer multiples), A061742 (squares), A072938, A079266, A087315, A094348, A106037, A121572, A053589, A064648, A132120, A260188.
Programs
-
Haskell
a002110 n = product $ take n a000040_list a002110_list = scanl (*) 1 a000040_list -- Reinhard Zumkeller, Feb 19 2012, May 03 2011
-
Magma
[1] cat [&*[NthPrime(i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Oct 24 2012
-
Magma
[1] cat [&*PrimesUpTo(p): p in PrimesUpTo(60)]; // Bruno Berselli, Feb 08 2015
-
Maple
A002110 := n -> mul(ithprime(i),i=1..n);
-
Mathematica
FoldList[Times, 1, Prime[Range[20]]] primorial[n_] := Product[Prime[i], {i, n}]; Array[primorial,20] (* José María Grau Ribas, Feb 15 2010 *) Join[{1}, Denominator[Accumulate[1/Prime[Range[20]]]]] (* Harvey P. Dale, Apr 11 2012 *)
-
PARI
a(n)=prod(i=1,n, prime(i)) \\ Washington Bomfim, Sep 23 2008
-
PARI
p=1; for (n=0, 100, if (n, p*=prime(n)); write("b002110.txt", n, " ", p) ) \\ Harry J. Smith, Nov 13 2009
-
PARI
a(n) = factorback(primes(n)) \\ David A. Corneth, May 06 2018
-
Python
from sympy import primorial def a(n): return 1 if n < 1 else primorial(n) [a(n) for n in range(51)] # Indranil Ghosh, Mar 29 2017
-
Sage
[sloane.A002110(n) for n in (1..20)] # Giuseppe Coppoletta, Dec 05 2014
-
Scheme
; with memoization-macro definec (definec (A002110 n) (if (zero? n) 1 (* (A000040 n) (A002110 (- n 1))))) ;; Antti Karttunen, Aug 30 2016
Formula
Asymptotic expression for a(n): exp((1 + o(1)) * n * log(n)) where o(1) is the "little o" notation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
Binomial transform = A136104: (1, 3, 11, 55, 375, 3731, ...). Equals binomial transform of A121572: (1, 1, 3, 17, 119, 1509, ...). - Gary W. Adamson, Dec 14 2007
a(0) = 1, a(n+1) = prime(n)*a(n). - Juri-Stepan Gerasimov, Oct 15 2010
a(n) = Product_{i=1..n} A000040(i). - Jonathan Vos Post, Jul 17 2008
A000005(a(n)) = 2^n. - Carlos Eduardo Olivieri, Jun 16 2015
For all n >= 0, a(n) = A276085(A000040(n+1)), a(n+1) = A276086(A143293(n)). - Antti Karttunen, Aug 30 2016
a(n) = A270592(2*n+2) - A270592(2*n+1) if 0 <= n <= 4 (conjectured for all n by Alon Kellner). - Jonathan Sondow, Mar 25 2018
Sum_{n>=1} 1/a(n) = A064648. - Amiram Eldar, Oct 16 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A132120. - Amiram Eldar, Apr 12 2021
Theta being Chebyshev's theta function, a(0) = exp(theta(1)), and for n > 0, a(n) = exp(theta(m)) for A000040(n) <= m < A000040(n+1) where m is an integer. - Miles Englezou, Nov 26 2024
Comments