A028362
Total number of self-dual binary codes of length 2n. Totally isotropic spaces of index n in symplectic geometry of dimension 2n.
Original entry on oeis.org
1, 3, 15, 135, 2295, 75735, 4922775, 635037975, 163204759575, 83724041661975, 85817142703524375, 175839325399521444375, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375
Offset: 1
G.f. = x + 3*x^2 + 15*x^3 + 135*x^4 + 2295*x^5 + 75735*x^6 + 4922775*x^7 + ...
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 630.
- T. D. Noe, Table of n, a(n) for n = 1..50
- C. Bachoc and P. Gaborit, On extremal additive F_4 codes of length 10 to 18, J. Théorie Nombres Bordeaux, 12 (2000), 255-271.
- Steven T. Dougherty and Esengül Saltürk, The neighbor graph of binary self-orthogonal codes, Adv. Math. Comm. (2024). See p. 6.
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
-
[1] cat [&*[ 2^k+1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
-
seq(mul(1 + 2^j, j = 1..n-1), n = 1..20); # G. C. Greubel, Jun 06 2020
-
Table[Product[2^i+1,{i,n-1}],{n,15}] (* or *) FoldList[Times,1, 2^Range[15]+1] (* Harvey P. Dale, Nov 21 2011 *)
Table[QPochhammer[-2, 2, n - 1], {n, 15}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
-
{a(n)=polcoeff(sum(m=0,n,2^(m*(m-1)/2)*x^m/prod(k=0,m-1,1-2^k*x+x*O(x^n))),n)} \\ Paul D. Hanna, Sep 16 2009
-
{a(n) = if( n<1, 0 , prod(k=1, n-1, 2^k + 1))}; /* Michael Somos, Jan 28 2018 */
-
{a(n) = sum(k=0, n-1, 2^(k*(k+1)/2) * prod(j=1, k, (2^(n-j) - 1) / (2^j - 1)))}; /* Michael Somos, Jan 28 2018 */
-
for n in range(2,40,2):
product = 1
for i in range(1,n//2-1 + 1):
product *= (2**i+1)
print(product)
# Nathan J. Russell, Mar 01 2016
-
from math import prod
def A028362(n): return prod((1<Chai Wah Wu, Jun 20 2022
-
from ore_algebra import *
R. = QQ['x']
A. = OreAlgebra(R, 'Qx', q=2)
print((Qx - x - 1).to_list([0,1], 10)) # Ralf Stephan, Apr 24 2014
-
from sage.combinat.q_analogues import q_pochhammer
[q_pochhammer(n-1,-2,2) for n in (1..20)] # G. C. Greubel, Jun 06 2020
-
;; With memoization-macro definec.
(define (A028362 n) (A028362off0 (- n 1)))
(definec (A028362off0 n) (if (zero? n) 1 (+ (A028362off0 (- n 1)) (* (expt 2 n) (A028362off0 (- n 1))))))
;; Antti Karttunen, Apr 15 2017
A003178
Number of indecomposable self-dual binary codes of length 2n.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 1, 1, 2, 2, 6, 8, 26, 45, 148, 457, 2523, 20786
Offset: 0
- R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.
- R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
a(16) corrected and a(17) added by
N. J. A. Sloane, based on data in Bilous's paper, Sep 06 2005
A106162
Number of indecomposable Type II binary self-dual codes of length 8n.
Original entry on oeis.org
1, 1, 1, 7, 75, 94251
Offset: 0
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- Koichi Betsumiya, Masaaki Harada and Akihiro Munemasa, A Complete Classification of Doubly Even Self-Dual Codes of Length 40, arXiv:1104.3727v3 [math.CO], v3, Aug 02, 2012.
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
a(4) corrected by John van Rees, Jul 21 2005. It was given as 76 by Conway and Pless and as 74 by Rains and Sloane.
a(5) = 94251 = 94343 - 75 - 7 - 7 - 1 - 1 - 1 (cf.
A106163) from Koichi Betsumaya, Aug 11 2012
A028363
Total number of doubly-even self-dual binary codes of length 8n.
Original entry on oeis.org
1, 30, 9845550, 171634285407048750, 193419995622362136809061156168750, 14272693289804307141953423466197932293533748208968750
Offset: 0
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 631.
-
Join[{1},Table[2*Product[2^i+1,{i,4n-2}],{n,6}]] (* Harvey P. Dale, May 08 2013 *)
Table[Product[2^i + 1, {i, 0, n/2 - 2}], {n, 8, 40, 8}] (* Nathan J. Russell, Mar 04 2016 *)
-
for n in range(8, 50, 8):
product = 1
for i in range(n//2 - 1):
product *= 2**i + 1
print(product, end=", ")
# Nathan J. Russell, Mar 01 2016
There is an error in Eq. (75) of F. J. MacWilliams and N. J. A. Sloane, the lower subscript should be 1 not 0.
A106163
Total number of (indecomposable or decomposable) Type II binary self-dual codes of length 8n.
Original entry on oeis.org
1, 1, 2, 9, 85, 94343
Offset: 0
- Koichi Betsumiya, Masaaki Harada and Akihiro Munemasa, A Complete Classification of Doubly Even Self-Dual Codes of Length 40, arXiv:1104.3727v3 [math.CO], v3, Aug 02, 2012. - From _Jonathan Vos Post_, Aug 06 2012
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53. [DOI] MR0558873
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A60 (1992), 183-195 (Abstract, pdf, ps, Table A, Table D).
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic. 11 (2005), 451-490. [DOI]
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746. [DOI] MR0514353
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
A269455
Number of Type I (singly-even) self-dual binary codes of length 2n.
Original entry on oeis.org
1, 3, 15, 105, 2295, 75735, 4922775, 625192425, 163204759575, 83724041661975, 85817142703524375, 175667691114114395625, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375, 3168896498278970068411253452090715625, 207692645973961964120828372930661061284375, 27222898185745116523209337325140537285726884375, 7136346644902153570976711733098966146766874104484375, 3741493773415815389266667264411257664189964123617799515625
Offset: 1
- W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, 2003, Page 366.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
- Nathan J. Russell, Table of n, a(n) for n = 1..49
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- P. Gaborit, Tables of Self-Dual Codes
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
-
Table[
If[Mod[2 n, 8] == 0,
Product[2^i + 1, {i, 1, n - 1}] - Product[2^i + 1, {i, 0, n - 2}] ,
Product[2^i + 1, {i, 1, n - 1}]],
{n, 1, 10}] (* Nathan J. Russell, Mar 01 2016 *)
-
a(n) = if (2*n%8==0, prod(i=1, n-1, 2^i+1)-prod(i=0, n-2, 2^i+1), prod(i=1, n-1, 2^i+1))
vector(20, n, a(n)) \\ Colin Barker, Feb 28 2016
-
for n in range(1,10):
product1 = 1
for i in range(1,n-1 + 1):
product1 *= (2**i+1)
if (2*n)%8 == 0:
product2 = 1
for i in range(n-2 + 1):
product2 *= (2**i+1)
print(product1 - product2)
else:
print(product1)
A322299
Number of distinct automorphism group sizes for binary self-dual codes of length 2n.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 7, 9, 16, 24, 48, 85, 149, 245, 388
Offset: 1
There are a(16) = 388 distinct sizes for the automorphism groups of the binary self-dual codes of length 16. In general, two automorphism groups with the same size are not necessarily isomorphic.
A322339
Smallest automorphism group size for a binary self-dual code of length 2n.
Original entry on oeis.org
2, 8, 48, 384, 2688, 10752, 46080, 73728, 82944, 82944, 36864, 12288, 3072, 384, 30, 2, 1
Offset: 1
The smallest automorphism group size a binary self-dual code of length 2*16 = 32 is a(16) = 2.
- N.J.A. Sloane, Is there a (72,36) d=16 self-dual code, IEEE Trans. Inform. Theory, 19 (1973), 251.
Cf. Self-Dual Code Automorphism Groups
A322299.
A105685
Number of inequivalent codes attaining highest minimal distance of any Type I (strictly) singly-even binary self-dual code of length 2n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 2, 7, 1, 1, 1, 3, 13, 3
Offset: 1
At length 8 the only strictly Type I self-dual code is {00,11}^4, so a(4) = 1.
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- P. Gaborit, Tables of Self-Dual Codes
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
A105674 gives the minimal distance of these codes,
A106165 the number of codes of any minimal distance and
A003179 the number of inequivalent codes allowing Type I or Type II and any minimal distance.
A106165
Number of inequivalent (indecomposable or decomposable) Type I but not Type II binary self-dual codes of length 2n.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 3, 4, 5, 9, 16, 25, 46, 103, 261, 731, 3210, 24147
Offset: 0
- R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53. MR0558873
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
Showing 1-10 of 20 results.
Comments