A028362
Total number of self-dual binary codes of length 2n. Totally isotropic spaces of index n in symplectic geometry of dimension 2n.
Original entry on oeis.org
1, 3, 15, 135, 2295, 75735, 4922775, 635037975, 163204759575, 83724041661975, 85817142703524375, 175839325399521444375, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375
Offset: 1
G.f. = x + 3*x^2 + 15*x^3 + 135*x^4 + 2295*x^5 + 75735*x^6 + 4922775*x^7 + ...
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 630.
- T. D. Noe, Table of n, a(n) for n = 1..50
- C. Bachoc and P. Gaborit, On extremal additive F_4 codes of length 10 to 18, J. Théorie Nombres Bordeaux, 12 (2000), 255-271.
- Steven T. Dougherty and Esengül Saltürk, The neighbor graph of binary self-orthogonal codes, Adv. Math. Comm. (2024). See p. 6.
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
-
[1] cat [&*[ 2^k+1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
-
seq(mul(1 + 2^j, j = 1..n-1), n = 1..20); # G. C. Greubel, Jun 06 2020
-
Table[Product[2^i+1,{i,n-1}],{n,15}] (* or *) FoldList[Times,1, 2^Range[15]+1] (* Harvey P. Dale, Nov 21 2011 *)
Table[QPochhammer[-2, 2, n - 1], {n, 15}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
-
{a(n)=polcoeff(sum(m=0,n,2^(m*(m-1)/2)*x^m/prod(k=0,m-1,1-2^k*x+x*O(x^n))),n)} \\ Paul D. Hanna, Sep 16 2009
-
{a(n) = if( n<1, 0 , prod(k=1, n-1, 2^k + 1))}; /* Michael Somos, Jan 28 2018 */
-
{a(n) = sum(k=0, n-1, 2^(k*(k+1)/2) * prod(j=1, k, (2^(n-j) - 1) / (2^j - 1)))}; /* Michael Somos, Jan 28 2018 */
-
for n in range(2,40,2):
product = 1
for i in range(1,n//2-1 + 1):
product *= (2**i+1)
print(product)
# Nathan J. Russell, Mar 01 2016
-
from math import prod
def A028362(n): return prod((1<Chai Wah Wu, Jun 20 2022
-
from ore_algebra import *
R. = QQ['x']
A. = OreAlgebra(R, 'Qx', q=2)
print((Qx - x - 1).to_list([0,1], 10)) # Ralf Stephan, Apr 24 2014
-
from sage.combinat.q_analogues import q_pochhammer
[q_pochhammer(n-1,-2,2) for n in (1..20)] # G. C. Greubel, Jun 06 2020
-
;; With memoization-macro definec.
(define (A028362 n) (A028362off0 (- n 1)))
(definec (A028362off0 n) (if (zero? n) 1 (+ (A028362off0 (- n 1)) (* (expt 2 n) (A028362off0 (- n 1))))))
;; Antti Karttunen, Apr 15 2017
A003179
Number of self-dual binary codes of length 2n (up to column permutation equivalence).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 4, 7, 9, 16, 25, 55, 103, 261, 731, 3295, 24147, 519492
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, preprint.
- R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53. MR0558873
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- Masaaki Harada and Akihiro Munemasa, Classification of Self-Dual Codes of Length 36, arXiv:1012.5464 [math.CO], 2010-2012.
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic. 11 (2005), 451-490.
- W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003, Pages 7,252-282,338-393.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
A003178
Number of indecomposable self-dual binary codes of length 2n.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 1, 1, 2, 2, 6, 8, 26, 45, 148, 457, 2523, 20786
Offset: 0
- R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.
- R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
a(16) corrected and a(17) added by
N. J. A. Sloane, based on data in Bilous's paper, Sep 06 2005
A269455
Number of Type I (singly-even) self-dual binary codes of length 2n.
Original entry on oeis.org
1, 3, 15, 105, 2295, 75735, 4922775, 625192425, 163204759575, 83724041661975, 85817142703524375, 175667691114114395625, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375, 3168896498278970068411253452090715625, 207692645973961964120828372930661061284375, 27222898185745116523209337325140537285726884375, 7136346644902153570976711733098966146766874104484375, 3741493773415815389266667264411257664189964123617799515625
Offset: 1
- W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, 2003, Page 366.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
- Nathan J. Russell, Table of n, a(n) for n = 1..49
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- P. Gaborit, Tables of Self-Dual Codes
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
-
Table[
If[Mod[2 n, 8] == 0,
Product[2^i + 1, {i, 1, n - 1}] - Product[2^i + 1, {i, 0, n - 2}] ,
Product[2^i + 1, {i, 1, n - 1}]],
{n, 1, 10}] (* Nathan J. Russell, Mar 01 2016 *)
-
a(n) = if (2*n%8==0, prod(i=1, n-1, 2^i+1)-prod(i=0, n-2, 2^i+1), prod(i=1, n-1, 2^i+1))
vector(20, n, a(n)) \\ Colin Barker, Feb 28 2016
-
for n in range(1,10):
product1 = 1
for i in range(1,n-1 + 1):
product1 *= (2**i+1)
if (2*n)%8 == 0:
product2 = 1
for i in range(n-2 + 1):
product2 *= (2**i+1)
print(product1 - product2)
else:
print(product1)
A322299
Number of distinct automorphism group sizes for binary self-dual codes of length 2n.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 7, 9, 16, 24, 48, 85, 149, 245, 388
Offset: 1
There are a(16) = 388 distinct sizes for the automorphism groups of the binary self-dual codes of length 16. In general, two automorphism groups with the same size are not necessarily isomorphic.
A322339
Smallest automorphism group size for a binary self-dual code of length 2n.
Original entry on oeis.org
2, 8, 48, 384, 2688, 10752, 46080, 73728, 82944, 82944, 36864, 12288, 3072, 384, 30, 2, 1
Offset: 1
The smallest automorphism group size a binary self-dual code of length 2*16 = 32 is a(16) = 2.
- N.J.A. Sloane, Is there a (72,36) d=16 self-dual code, IEEE Trans. Inform. Theory, 19 (1973), 251.
Cf. Self-Dual Code Automorphism Groups
A322299.
A323357
Number of binary self-dual codes of length 2n (up to permutation equivalence) that have a unique automorphism group size.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 7, 9, 16, 23, 42, 68, 94, 124, 159, 187, 212
Offset: 1
There are a(18) = 212 binary self-dual codes (up to permutation equivalence) of length 2*18 = 36 that have a unique automorphism group size.
A321946
Number of divisors for the automorphism group size having the largest number of divisors for a binary self-dual code of length 2n.
Original entry on oeis.org
2, 4, 10, 28, 36, 66, 144, 192, 340, 570, 1200, 1656, 3456, 5616, 9072, 10752, 22176
Offset: 1
There is one binary self-dual code of length 2*14=28 having an automorphism group size of 1428329123020800. This number has a(14) = 5616 divisors (including 1 and 1428329123020800). The automorphism size of 1428329123020800 represents the automorphism size with the largest number of divisors for a binary self-dual code of length 2*14=28.
A322309
Largest automorphism group size for a binary self-dual code of length 2n.
Original entry on oeis.org
2, 8, 48, 1344, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, 42849873690624000, 1371195958099968000, 46620662575398912000
Offset: 1
The largest automorphism group size a binary self-dual code of length 2*16=32 is a(16) = 1371195958099968000.
- W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003, Pages 338-393.
A323358
Number of distinct automorphism group sizes for binary self-dual codes of length 2n such that multiple same length binary self-dual codes with different weight distributions share the same automorphism group size.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 17, 55, 117, 226, 343, 535
Offset: 1
There are a(18) = 535 automorphism group sizes for the binary self-dual codes of length 2*18 = 36 where codes having different weight distributions share the same automorphism group size.
Showing 1-10 of 10 results.
Comments