A003463 a(n) = (5^n - 1)/4.
0, 1, 6, 31, 156, 781, 3906, 19531, 97656, 488281, 2441406, 12207031, 61035156, 305175781, 1525878906, 7629394531, 38146972656, 190734863281, 953674316406, 4768371582031, 23841857910156, 119209289550781, 596046447753906, 2980232238769531
Offset: 0
Examples
Base 5...........decimal 0......................0 1......................1 11.....................6 111...................31 1111.................156 11111................781 111111..............3906 1111111............19531 11111111...........97656 111111111.........488281 1111111111.......2441406 etc. ...............etc. - _Zerinvary Lajos_, Jan 14 2007
References
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 282.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Joseph E. Bonin and Joseph P. S. Kung The Number of Points In A Combinatorial Geometry With No 8-Point-Line Minors, Mathematical Essays in Honor of Gian-Carlo Rota, B. Sagan and R. P. Stanley, eds., Birkhäuser, 1998, 271-284.
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Roger B. Eggleton, Maximal Midpoint-Free Subsets of Integers, International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 374
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Repunit
- Index entries for linear recurrences with constant coefficients, signature (6,-5).
Crossrefs
Programs
-
Magma
[(5^n-1)/4 : n in [0..30]]; // Wesley Ivan Hurt, Sep 25 2014
-
Maple
a:=n->sum(5^(n-j),j=1..n): seq(a(n), n=0..23); # Zerinvary Lajos, Jan 04 2007 A003463:=1/(5*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=6*a[n-1]-5*a[n-2]od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 21 2008
-
Mathematica
lst={}; Do[p=(5^n-1)/4; AppendTo[lst, p], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *) Table[((5^n-1)/4),{n,0,25}] (* Vincenzo Librandi, Aug 20 2012 *) NestList[5 # + 1 &, 0, 23] (* Bruno Berselli, Feb 06 2013 *) LinearRecurrence[{6,-5},{0,1},30] (* Harvey P. Dale, Sep 20 2023 *)
-
Maxima
A003463(n):=floor((5^n-1)/4)$ makelist(A003463(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
a(n)=5^n\4; \\ Charles R Greathouse IV, Jul 15 2011
-
Sage
[lucas_number1(n,6,5) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
-
Sage
[gaussian_binomial(n,1,5) for n in range(0,24)] # Zerinvary Lajos, May 28 2009
Formula
Second binomial transform of A015518; binomial transform of A000302 (preceded by 0). - Paul Barry, Mar 28 2003
a(n) = Sum_{k=1..n} binomial(n,k)*4^(k-1). - Paul Barry, Mar 28 2003
a(n) = (-1)^n times the (i, j)-th element of M^n (for all i and j such that i is not equal to j), where M = ((1, -1, 1, -2), (-1, 1, -2, 1), (1, -2, 1, -1), (-2, 1, -1, 1)). - Simone Severini, Nov 25 2004
a(n) = A125118(n,4) for n>3. - Reinhard Zumkeller, Nov 21 2006
a(n) = ((3+sqrt(4))^n - (3-sqrt(4))^n)/4. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008
a(n) = 6*a(n-1) - 5*a(n-2) n>1, a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
From Wolfdieter Lang, Oct 18 2010: (Start)
O.g.f.: x/((1-5*x)*(1-x)).
a(n) = 4*a(n-1) + 5*a(n-2) + 2, a(0)=0, a(1)=1.
a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3), a(0)=0, a(1)=1, a(2)=6. Observation by G. Detlefs. See the W. Lang comment and link. (End)
a(n) = 5*a(n-1) + 1 with n>0, a(0)=0. - Vincenzo Librandi, Nov 17 2010
a(n) = a(n-1) + A000351(n-1) n>0, a(0)=0. - Felix P. Muga II, Mar 19 2014
a(n) = a(n-1) + 20*a(n-2) + 5 for n > 1, a(0)=0, a(1)=1. - Felix P. Muga II, Mar 19 2014
a(n) = A060458(n)/2^(n+2), for n > 0. - R. J. Cano, Sep 25 2014
From Ilya Gutkovskiy, Oct 05 2016: (Start)
E.g.f.: (exp(4*x) - 1)*exp(x)/4.
Comments