A242654 1 followed by the union of the terms > 2 in A002387 (or A004080) and A115515.
1, 3, 4, 10, 11, 30, 31, 82, 83, 226, 227, 615, 616, 1673, 1674, 4549, 4550, 12366, 12367, 33616, 33617, 91379, 91380, 248396, 248397, 675213, 675214, 1835420, 1835421, 4989190, 4989191, 13562026, 13562027, 36865411, 36865412, 100210580, 100210581, 272400599, 272400600, 740461600, 740461601, 2012783314
Offset: 1
Keywords
Programs
-
Mathematica
b[n_] := Ceiling[k /. FindRoot[HarmonicNumber[k] == n, {k, Exp[n]}, WorkingPrecision -> 100]] - 1; bb = Array[b, 22]; A242654 = Union[bb, bb + 1] // Rest (* Jean-François Alcover, Apr 10 2019 *)
Comments