cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001113 Decimal expansion of e.

Original entry on oeis.org

2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3, 5, 2, 6, 6, 2, 4, 9, 7, 7, 5, 7, 2, 4, 7, 0, 9, 3, 6, 9, 9, 9, 5, 9, 5, 7, 4, 9, 6, 6, 9, 6, 7, 6, 2, 7, 7, 2, 4, 0, 7, 6, 6, 3, 0, 3, 5, 3, 5, 4, 7, 5, 9, 4, 5, 7, 1, 3, 8, 2, 1, 7, 8, 5, 2, 5, 1, 6, 6, 4, 2, 7, 4, 2, 7, 4, 6
Offset: 1

Views

Author

Keywords

Comments

e is sometimes called Euler's number or Napier's constant.
Also, decimal expansion of sinh(1)+cosh(1). - Mohammad K. Azarian, Aug 15 2006
If m and n are any integers with n > 1, then |e - m/n| > 1/(S(n)+1)!, where S(n) = A002034(n) is the smallest number such that n divides S(n)!. - Jonathan Sondow, Sep 04 2006
Limit_{n->infinity} A000166(n)*e - A000142(n) = 0. - Seiichi Kirikami, Oct 12 2011
Euler's constant (also known as Euler-Mascheroni constant) is gamma = 0.57721... and Euler's number is e = 2.71828... . - Mohammad K. Azarian, Dec 29 2011
One of the many continued fraction expressions for e is 2+2/(2+3/(3+4/(4+5/(5+6/(6+ ... from Ramanujan (1887-1920). - Robert G. Wilson v, Jul 16 2012
e maximizes the value of x^(c/x) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. This explains why elements of A000792 are composed primarily of factors of 3, and where needed, some factors of 2. These are the two primes closest to e. - Richard R. Forberg, Oct 19 2014
There are two real solutions x to c^x = x^c when c, x > 0 and c != e, one of which is x = c, and only one real solution when c = e, where the solution is x = e. - Richard R. Forberg, Oct 22 2014
This is the expected value of the number of real numbers that are independently and uniformly chosen at random from the interval (0, 1) until their sum exceeds 1 (Bush, 1961). - Amiram Eldar, Jul 21 2020

Examples

			2.71828182845904523536028747135266249775724709369995957496696762772407663...
		

References

  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 400.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 250-256.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers, p. 85.
  • E. Maor, e: The Story of a Number, Princeton Univ. Press, 1994.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 52.
  • G. W. Reitwiesner, An ENIAC determination of pi and e to more than 2000 decimal places. Math. Tables and Other Aids to Computation 4, (1950). 11-15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 1 and 2, equations 1:7:4, 2:5:4 at pages 13, 20.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 46.

Crossrefs

Cf. A002034, A003417 (continued fraction), A073229, A122214, A122215, A122216, A122217, A122416, A122417.
Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), this sequence (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012
Powers e^k: A092578 (k = -7), A092577 (k = -6), A092560 (k = -5), A092553 - A092555 (k = -2 to -4), A068985 (k = -1), A072334 (k = 2), A091933 (k = 3), A092426 (k = 4), A092511 - A092513 (k = 5 to 7).

Programs

  • Haskell
    -- See Niemeijer link.
    a001113 n = a001113_list !! (n-1)
    a001113_list = eStream (1, 0, 1)
       [(n, a * d, d) | (n, d, a) <- map (\k -> (1, k, 1)) [1..]] where
       eStream z xs'@(x:xs)
         | lb /= approx z 2 = eStream (mult z x) xs
         | otherwise = lb : eStream (mult (10, -10 * lb, 1) z) xs'
         where lb = approx z 1
               approx (a, b, c) n = div (a * n + b) c
               mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
    -- Reinhard Zumkeller, Jun 12 2013
  • Maple
    Digits := 200: it := evalf((exp(1))/10, 200): for i from 1 to 200 do printf(`%d,`,floor(10*it)): it := 10*it-floor(10*it): od: # James Sellers, Feb 13 2001
  • Mathematica
    RealDigits[E, 10, 120][[1]] (* Harvey P. Dale, Nov 14 2011 *)

Formula

e = Sum_{k >= 0} 1/k! = lim_{x -> 0} (1+x)^(1/x).
e is the unique positive root of the equation Integral_{u = 1..x} du/u = 1.
exp(1) = ((16/31)*(1 + Sum_{n>=1} ((1/2)^n*((1/2)*n^3 + (1/2)*n + 1)/n!)))^2. Robert Israel confirmed that the above formula is correct, saying: "In fact, Sum_{n=0..oo} n^j*t^n/n! = P_j(t)*exp(t) where P_0(t) = 1 and for j >= 1, P_j(t) = t (P_(j-1)'(t) + P_(j-1)(t)). Your sum is 1/2*P_3(1/2) + 1/2*P_1(1/2) + P_0(1/2)." - Alexander R. Povolotsky, Jan 04 2009
exp(1) = (1 + Sum_{n>=1} ((1+n+n^3)/n!))/7. - Alexander R. Povolotsky, Sep 14 2011
e = 1 + (2 + (3 + (4 + ...)/4)/3)/2 = 2 + (1 + (1 + (1 + ...)/4)/3)/2. - Rok Cestnik, Jan 19 2017
From Peter Bala, Nov 13 2019: (Start)
The series representation e = Sum_{k >= 0} 1/k! is the case n = 0 of the more general result e = n!*Sum_{k >= 0} 1/(k!*R(n,k)*R(n,k+1)), n = 0,2,3,4,..., where R(n,x) is the n-th row polynomial of A269953.
e = 2 + Sum_{n >= 0} (-1)^n*(n+2)!/(d(n+2)*d(n+3)), where d(n) = A000166(n).
e = Sum_{n >= 0} (x^2 + (n+2)*x + n)/(n!(n + x)*(n + 1 + x)), provided x is not zero or a negative integer. (End)
Equals lim_{n -> oo} (2*3*5*...*prime(n))^(1/prime(n)). - Peter Luschny, May 21 2020
e = 3 - Sum_{n >= 0} 1/((n+1)^2*(n+2)^2*n!). - Peter Bala, Jan 13 2022
e = lim_{n->oo} prime(n)*(1 - 1/n)^prime(n). - Thomas Ordowski, Jan 31 2023
e = 1+(1/1)*(1+(1/2)*(1+(1/3)*(1+(1/4)*(1+(1/5)*(1+(1/6)*(...)))))), equivalent to the first formula. - David Ulgenes, Dec 01 2023
From Michal Paulovic, Dec 12 2023: (Start)
Equals lim_{n->oo} (1 + 1/n)^n.
Equals x^(x^(x^...)) (infinite power tower) where x = e^(1/e) = A073229. (End)
Equals Product_{k>=1} (1 + 1/k) * (1 - 1/(k + 1)^2)^k. - Antonio Graciá Llorente, May 14 2024
Equals lim_{n->oo} Product_{k=1..n} (n^2 + k)/(n^2 - k) (see Finch). - Stefano Spezia, Oct 19 2024
e ~ (1 + 9^((-4)^(7*6)))^(3^(2^85)), correct to more than 18*10^24 digits (Richard Sabey, 2004); see Haran and Grime link. - Paolo Xausa, Dec 21 2024.

A004603 Expansion of Pi in base 4.

Original entry on oeis.org

3, 0, 2, 1, 0, 0, 3, 3, 3, 1, 2, 2, 2, 2, 0, 2, 0, 2, 0, 1, 1, 2, 2, 0, 3, 0, 0, 2, 0, 3, 1, 0, 3, 0, 1, 0, 3, 0, 1, 2, 1, 2, 0, 2, 2, 0, 2, 3, 2, 0, 0, 0, 3, 1, 3, 0, 0, 1, 3, 0, 3, 1, 0, 1, 0, 2, 2, 1, 0, 0, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 2, 0, 2, 2, 1, 2, 1, 3, 3, 0, 3, 0, 1, 3, 1, 0, 0, 0, 0, 2, 0, 0, 2, 3, 2
Offset: 1

Views

Author

Keywords

Comments

Theoretically, this sequence could be used to encode a given number of digits of Pi as a DNA sequence, which could then be read back from one helix. The value read back from the other helix would of course depend on the assignment of G, A, C, T to the digits 0, 1, 2, 3. - Alonso del Arte, Nov 07 2011

Examples

			3.02100333122220202011220300203103010301...
		

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), this sequence (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.
Cf. A004595, A004541. - Jason Kimberley, Dec 01 2012

Programs

  • Mathematica
    RealDigits[Pi, 4, 100][[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 4], {n, 1, 100}] (* Joan Ludevid, Jul 04 2022; easy to compute a(10000000)=2 with this function; requires Mathematica 12.0+ *)

Formula

a(n) = 2*A004601(2n) + A004601(2n+1). - Jason Kimberley, Nov 08 2012

A004593 Expansion of e in base 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 2

Views

Author

Keywords

Comments

The first 19 digits are a reverse copy of the 7th through 25th digits of the binary expansion of Pi (A004601). - Dan Graham, May 03 2015

Examples

			10.10110111111000010...
		

Crossrefs

Expansion of e in base b: this sequence (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), A001113 (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012

Programs

A004600 Expansion of e in base 9.

Original entry on oeis.org

2, 6, 4, 1, 5, 5, 7, 3, 6, 4, 1, 8, 8, 3, 6, 4, 2, 5, 8, 6, 5, 2, 8, 8, 3, 7, 8, 5, 2, 1, 5, 4, 8, 7, 4, 0, 1, 6, 8, 8, 4, 7, 2, 3, 6, 3, 2, 6, 6, 8, 6, 2, 1, 6, 3, 0, 4, 5, 2, 8, 5, 2, 1, 2, 2, 1, 0, 0, 5, 4, 3, 3, 5, 3, 4, 8, 2, 4, 4, 4, 5, 5, 6, 6, 8, 2, 5, 8, 2, 0, 4, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), this sequence (b=9), A001113 (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012

Programs

Extensions

a(64) onwards corrected and more terms from Sean A. Irvine, Jan 22 2016

A004594 Expansion of e in base 3.

Original entry on oeis.org

2, 2, 0, 1, 1, 0, 1, 1, 2, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 0, 1, 2, 2, 2, 2, 1, 0, 2, 0, 1, 1, 0, 2, 1, 2, 2, 2, 2, 0, 1, 2, 0, 2, 2, 2, 2, 2, 1, 0, 2, 1, 2, 2, 1, 2, 0, 2, 0, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 2, 0, 2, 2, 2, 2, 1, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 0, 0, 2, 2, 0, 2, 0, 2, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Expansion of e in base b: A004593 (b=2), this sequence (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), A001113 (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012

Programs

  • Mathematica
    RealDigits[E,3,120][[1]] (* Harvey P. Dale, Nov 12 2015 *)

A004596 Expansion of e in base 5.

Original entry on oeis.org

2, 3, 2, 4, 3, 4, 3, 0, 3, 4, 0, 4, 4, 2, 3, 0, 3, 4, 0, 4, 1, 0, 3, 1, 0, 3, 3, 1, 0, 1, 3, 2, 4, 0, 1, 3, 3, 2, 3, 4, 4, 1, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 1, 0, 3, 3, 3, 0, 2, 1, 4, 4, 3, 3, 4, 2, 0, 0, 3, 4, 3, 3, 4, 2, 0, 0, 4, 4, 3, 4, 0, 4, 1, 4, 2, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), this sequence (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), A001113 (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012

Programs

  • Mathematica
    RealDigits[E, 5, 120][[1]] (* Harvey P. Dale, Sep 25 2014 *)

Extensions

Corrected by Harvey P. Dale, Sep 25 2014

A004597 Expansion of e in base 6.

Original entry on oeis.org

2, 4, 1, 5, 0, 5, 2, 0, 5, 3, 5, 2, 4, 2, 4, 3, 1, 2, 3, 1, 2, 5, 4, 0, 4, 3, 5, 2, 3, 5, 4, 4, 0, 4, 3, 5, 4, 2, 3, 5, 0, 3, 2, 4, 4, 4, 0, 1, 0, 2, 1, 4, 4, 1, 2, 0, 0, 0, 3, 5, 3, 0, 1, 2, 1, 5, 2, 3, 5, 4, 4, 0, 1, 3, 5, 1, 4, 2, 1, 5, 4, 4, 0, 0, 3, 5, 0, 2, 5, 1, 4, 3, 2, 5, 4, 5, 3, 3, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), this sequence (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), A001113 (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012

Programs

Extensions

a(78) onwards corrected by Sean A. Irvine, Jan 22 2016

A004598 Expansion of e in base 7.

Original entry on oeis.org

2, 5, 0, 1, 2, 4, 1, 0, 6, 5, 4, 2, 2, 6, 5, 0, 4, 3, 3, 5, 3, 5, 3, 0, 0, 0, 3, 0, 0, 6, 2, 6, 4, 4, 2, 6, 3, 0, 5, 1, 4, 4, 4, 2, 0, 0, 1, 3, 1, 5, 3, 3, 6, 5, 6, 6, 4, 4, 6, 4, 4, 0, 1, 3, 3, 5, 4, 6, 4, 6, 5, 2, 2, 1, 6, 6, 5, 4, 2, 0, 6, 1, 5, 0, 0, 0, 6, 5, 0, 0, 6, 5, 1, 4, 3, 0, 4, 0, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), this sequence (b=7), A004599 (b=8), A004600 (b=9), A001113 (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012

Programs

Extensions

a(72) onwards corrected by Sean A. Irvine, Jan 22 2016

A004599 Expansion of e in base 8.

Original entry on oeis.org

2, 5, 5, 7, 6, 0, 5, 2, 1, 3, 0, 5, 0, 5, 3, 5, 5, 1, 2, 4, 6, 5, 2, 7, 7, 3, 4, 2, 5, 4, 2, 0, 0, 4, 7, 1, 7, 2, 3, 6, 3, 6, 1, 6, 6, 1, 3, 4, 7, 0, 5, 4, 0, 7, 4, 7, 0, 5, 5, 1, 5, 5, 1, 2, 6, 5, 1, 7, 0, 2, 3, 3, 1, 0, 1, 0, 5, 0, 6, 2, 0, 6, 3, 7, 6, 7, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), this sequence (b=8), A004600 (b=9), A001113 (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012

Programs

  • Mathematica
    RealDigits[E, 8, 100][[1]] (* G. C. Greubel, Mar 24 2018 *)

Extensions

More terms from Jon E. Schoenfield, Mar 11 2018

A170873 Hexadecimal expansion of e.

Original entry on oeis.org

2, 11, 7, 14, 1, 5, 1, 6, 2, 8, 10, 14, 13, 2, 10, 6, 10, 11, 15, 7, 1, 5, 8, 8, 0, 9, 12, 15, 4, 15, 3, 12, 7, 6, 2, 14, 7, 1, 6, 0, 15, 3, 8, 11, 4, 13, 10, 5, 6, 10, 7, 8, 4, 13, 9, 0, 4, 5, 1, 9, 0, 12, 15, 14, 15, 3, 2, 4, 14, 7, 7, 3, 8, 9, 2, 6, 12, 15, 11, 14, 5, 15, 4, 11, 15, 8, 13, 8
Offset: 1

Views

Author

Andrew J. Robbins, Jan 03 2010, at the request of N. J. A. Sloane

Keywords

Examples

			2.B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF324E...
		

Crossrefs

Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), A001113 (b=10), this sequence (b=16). - Jason Kimberley, Dec 05 2012

Programs

  • Mathematica
    RealDigits[E~N~200, 16][[1]]
    RealDigits[E,16,120][[1]] (* Harvey P. Dale, Mar 21 2023 *)

Formula

a(n) = 8*A004593(4n)+4*A004593(4n+1)+2*A004593(4n+2)+1*A004593(4n+3).
Showing 1-10 of 11 results. Next