A006516 a(n) = 2^(n-1)*(2^n - 1), n >= 0.
0, 1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528, 140737479966720, 562949936644096
Offset: 0
Examples
G.f. = x + 6*x^2 + 28*x^3 + 120*x^4 + 496*x^5 + 2016*x^6 + 8128*x^7 + 32640*x^8 + ...
References
- V. K. Balakrishnan, Theory and problems of Combinatorics, "Schaum's Outline Series", McGraw-Hill, 1995, p. 69.
- Martin Gardner, Mathematical Carnival, "Pascal's Triangle", p. 201, Alfred A. Knopf NY, 1975.
- Richard K. Guy, Unsolved problems in number theory, (p. 72).
- Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
- Clifford A. Pickover, Wonders of Numbers, Chap. 55, Oxford Univ. Press NY 2000.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- M. Archibald, A. Blecher, A. Knopfmacher and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
- William Banks, Ahmet Güloğlu, Wesley Nevans and Filip Saidak, Descartes numbers, Anatomy of integers, 167-173, CRM Proc. Lecture Notes, 46, Amer. Math. Soc., Providence, RI, 2008. MathSciNet review (subscription required).
- Taylor Brysiewicz, Holger Eble, and Lukas Kühne, Enumerating chambers of hyperplane arrangements with symmetry, arXiv:2105.14542 [math.CO], 2021.
- John Elias, Illustration of initial terms: Mersenne-Sierpinski Triangles
- Farideh Firoozbakht and M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- R. C. Gunning, Riemann Surfaces and Second-Order Theta Functions, Springer-Verlag, 1976. See page 22.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- T. Helleseth, T. Klove and J.Mykkeltveit, On the covering radius of binary codes (Corresp.), IEEE Transactions on Information Theory, Vol. 24 (1978).
- V. Meally, Letter to N. J. A. Sloane, May 1975
- Axel Muller, Metod Saniga, Alain Giorgetti, Henri de Boutray, and Frédéric Holweck, New and improved bounds on the contextuality degree of multi-qubit configurations, arXiv:2305.10225 [quant-ph], 2023.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, Series A, Vol. 20 (1976).
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Crossrefs
Programs
-
GAP
List([0..25],n->2^(n-1)*(2^n-1)); # Muniru A Asiru, Dec 06 2018
-
Haskell
a006516 n = a006516_list !! n a006516_list = 0 : 1 : zipWith (-) (map (* 6) $ tail a006516_list) (map (* 8) a006516_list) -- Reinhard Zumkeller, Oct 25 2013
-
Magma
[2^(n-1)*(2^n - 1): n in [0..30]]; // Vincenzo Librandi, Oct 31 2014
-
Maple
GBC := proc(n,k,q) local i; mul( (q^(n-i)-1)/(q^(k-i)-1),i=0..k-1); end; # define q-ary Gaussian binomial coefficient [ n,k ]_q [ seq(GBC(n+1,2,2)-GBC(n,2,2), n=0..30) ]; # produces A006516 A006516:=1/(4*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation seq(binomial(2^n, 2), n=0..19); # Zerinvary Lajos, Feb 22 2008
-
Mathematica
Table[2^(n - 1)(2^n - 1), {n, 0, 30}] (* or *) LinearRecurrence[{6, -8}, {0, 1}, 30] (* Harvey P. Dale, Jul 15 2011 *)
-
Maxima
A006516(n):=2^(n-1)*(2^n - 1)$ makelist(A006516(n),n,0,30); /* Martin Ettl, Nov 15 2012 */
-
PARI
a(n)=(1<
Charles R Greathouse IV, Jun 10 2011 -
PARI
vector(100, n, n--; 2^(n-1)*(2^n-1)) \\ Altug Alkan, Oct 06 2015
-
Python
for n in range(0, 30): print(2**(n-1)*(2**n - 1), end=', ') # Stefano Spezia, Dec 06 2018
-
Sage
[lucas_number1(n,6,8) for n in range(24)] # Zerinvary Lajos, Apr 22 2009
-
Sage
[(4**n - 2**n) / 2 for n in range(24)] # Zerinvary Lajos, Jun 05 2009
Formula
G.f.: x/((1 - 2*x)*(1 - 4*x)).
E.g.f. for a(n+1), n>=0: 2*exp(4*x) - exp(2*x).
a(n) = 2^(n-1)*Stirling2(n+1,2), n>=0, with Stirling2(n,m)=A008277(n,m).
Second column of triangle A075497.
a(n) = Stirling2(2^n,2^n-1) = binomial(2^n,2). - Ross La Haye, Jan 12 2008
a(n+1) = 4*a(n) + 2^n. - Philippe Deléham, Feb 20 2004
Convolution of 4^n and 2^n. - Ross La Haye, Oct 29 2004
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} 4^(n-j)*binomial(j,k). - Paul Barry, Aug 05 2005
a(n+2) = 6*a(n+1) - 8*a(n), a(1) = 1, a(2) = 6. - Daniele Parisse, Jul 28 2006 [Typo corrected by Yosu Yurramendi, Aug 06 2008]
Row sums of triangle A134346. Also, binomial transform of A048473: (1, 5, 17, 53, 161, ...); double bt of A151821: (1, 4, 8, 16, 32, 64, ...) and triple bt of A010684: (1, 3, 1, 3, 1, 3, ...). - Gary W. Adamson, Oct 21 2007
a(n) = 3*Stirling2(n+1,4) + Stirling2(n+2,3). - Ross La Haye, Jun 01 2008
a(n) = (4^n - 2^n)/2.
a(n) = A153006(2^n-1). - Omar E. Pol, Nov 20 2010
a(n) = binomial(2*n+2, n+1) - Catalan(n+2). - N. J. A. Sloane, Apr 01 2021
a(n) = A171476(n-1), for n >= 1, and a(0) = 0. - Wolfdieter Lang, Jul 27 2022
Comments