cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A278314 a(n) = -c(n-1) * c(n-2) * c(n+3) where c(n) = A006769(n).

Original entry on oeis.org

0, 0, 1, -3, -5, -14, -8, 69, -435, 2065, 3612, 28888, -43355, -2616119, 28076979, -332513754, 331948240, 8280062505, 641260644409, 18784454671297, -318128427505160, 10663732503571536, -66316334575107447, -8938035295591025771, -588310630753491921045
Offset: 1

Views

Author

Michael Somos, Nov 17 2016

Keywords

Comments

a(n) = A028942(n) up to sign.
y coordinate of n*P = -A028942(n) / A028943(n) = a(n) / A006769(n)^3 where P is generator for rational points on curve y^2 + y = x^3 - x.

Examples

			G.f. = x^3 - 3*x^4 - 5*x^5 - 14*x^6 - 8*x^7 + 69*x^8 - 435*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(m, an); if( n>0, m = n; an = vector( max(12, m), i, if( i<13, [0, 0, 1, -3, -5, -14, -8, 69, -435, 2065, 3612, 28888][i], 0)), m = 1-n; an = vector( max(12, m), i, if( i<13, [1, 1, 1, 0, -2, 3, -15, -35, -56, -92, 2001, -8555][i], 0))); for( k=13, m, an[k] = (an[k-1] * an[k-7] + 3 *  an[k-2] * an[k-6] - 3 * an[k-3] * an[k-5] + 6 * an[k-4]^2) / an[k-8]); an[m]};

Formula

0 = a(n)*a(n+8) - a(n+1)*a(n+7) - 3*a(n+2)*a(n+6) + 3*a(n+3)*a(n+5) - 6*a(n+4)^2 for all n in Z.
0 = a(n+1)*a(n+2)*a(n+6) - 2*a(n+1)*a(n+3)*a(n+5) + 3*a(n+1)*a(n+4)^2 + 3*a(n+2)^2*a(n+5) + a(n+2)*a(n+3)*a(n+4) - a(n+3)^3 for all n in Z.

A178072 Sequence with Hankel transform equal to the Somos-4 sequence A006769(n+2).

Original entry on oeis.org

1, 0, -1, -1, -1, -1, 1, 8, 23, 45, 55, -14, -317, -1095, -2459, -3574, -681, 16124, 64605, 159483, 260869, 134374, -906919, -4228769, -11317061, -20327731, -15742753, 52640154, 293447719, 847451759, 1648865921, 1636313816, -2986606297, -21074495982
Offset: 0

Views

Author

Paul Barry, May 19 2010

Keywords

Examples

			G.f. = 1 - x^2 - x^3 - x^4 - x^5 + x^6 + 8*x^7 + 23*x^8 + 45*x^9 + 55*x^10 + ...
		

Crossrefs

Cf. A006769.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(2/(1+2*x+x^2+Sqrt(1-4*x+6*x^2+x^4)))); // G. C. Greubel, Sep 22 2018
  • Mathematica
    CoefficientList[Series[2/(1+2*x+x^2+Sqrt[1-4*x+6*x^2+x^4]), {x, 0, 40}], x] (* G. C. Greubel, Sep 22 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 / (1 + 2*x + x^2 + sqrt(1 - 4*x + 6*x^2 + x^4 + x*O(x^n))), n))}; /* Michael Somos, Jun 13 2010 */
    
  • PARI
    my(x='x+O('x^50)); Vec(2/(1+2*x+x^2+(1-4*x+6*x^2+x^4)^(1/2))) \\ Altug Alkan, Sep 23 2018
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (C(n-k,k)/(n-2*k+1))*Sum_{i=0..min(k,n-2*k)} C(k,i)*C(n-k-i-1,n-2*k-i)*2^(n-2*k-i)*(-1)^(k-i).
From Michael Somos, Jun 13 2010: (Start)
G.f. A(x) satisfies 0 = f(x, A(x)) where f(x, y) = (2*x + x^3) * y^2 - (1 + x)^2 * y + 1.
G.f.: 2 / (1 + 2*x + x^2 + sqrt(1 - 4*x + 6*x^2 + x^4)). (End)
Conjecture: 2*n*(n+1)*a(n) +2*n*(n+1)*a(n-1) -3*(3*n-1)*(3*n-4)*a(n-2) +(61*n^2-191*n+36)*a(n-3) +6*(-2*n^2+2*n-1)*a(n-4) +2*(5*n-1)*(4*n-15)*a(n-5) +n*(n-5)*a(n-6) +(5*n-1)*(n-6)*a(n-7)=0. - R. J. Mathar, Jun 14 2016

A006720 Somos-4 sequence: a(0)=a(1)=a(2)=a(3)=1; for n >= 4, a(n) = (a(n-1) * a(n-3) + a(n-2)^2) / a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, 7869898, 126742987, 1687054711, 47301104551, 1123424582771, 32606721084786, 1662315215971057, 61958046554226593, 4257998884448335457, 334806306946199122193, 23385756731869683322514, 3416372868727801226636179
Offset: 0

Views

Author

Keywords

Comments

From the 5th term on, all terms have a primitive divisor; in other words, a prime divisor that divides no earlier term in the sequence. A proof appears in the Everest-McLaren-Ward paper. - Graham Everest (g.everest(AT)uea.ac.uk), Oct 26 2005
Twelve prime terms are known, occurring at indices 4, 5, 6, 7, 8, 11, 13, 16, 43, 52, 206, 647. The last two have been checked for probable primality only. The 647th term has 18498 decimal digits. Possibly these are the only prime terms in the entire sequence. - Graham Everest (g.everest(AT)uea.ac.uk), Nov 28 2006
The density of primes dividing some term in the sequence is 11/21. - Jeremy Rouse, Sep 18 2013
a(n) is a divisor of a(n+k*(2*n-3)) for all integers n and k. - Peter H van der Kamp, May 18 2015
a(n) is a divisor of A051138(k*(2*n-3)) for all integers n and k. - Helmut Ruhland, Jan 26 2024

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 565.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; pp. 9, 179.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For primes see A129739, A129740, A129741.
Cf. A227199 (primes dividing some term).

Programs

  • Haskell
    a006720 n = a006720_list !! n
    a006720_list = [1,1,1,1] ++
       zipWith div (foldr1 (zipWith (+)) (map b [1..2])) a006720_list
       where b i = zipWith (*) (drop i a006720_list) (drop (4-i) a006720_list)
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    I:=[1,1,1,1]; [n le 4 select I[n] else (Self(n-1)*Self(n-3)+Self(n-2)^2)/Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 07 2017
  • Maple
    Digits:=11; f(x):=4*x^3-4*x+1;sols:=evalf(solve(f(x),x)); e1:=Re(sols[1]); e3:=Re(sols[2]); w1:=evalf(Int((f(x))^(-0.5),x=e1..infinity)); w3:=I*evalf(Int((-f(x))^(-0.5),x=-infinity..e3)); k:=2*w1-evalf(Int((f(x))^(-0.5),x=1..infinity)); z0:=w3+evalf(Int((f(x))^(-0.5),x=e3..-1)); A:=1/WeierstrassSigma(z0,4.0,-1.0); B:=WeierstrassSigma(k,4.0,-1.0)/WeierstrassSigma(z0+k,4.0,-1.0)/A; for n from 0 to 10 do a[n]:=A*B^n*WeierstrassSigma(z0+n*k,4.0,-1.0)/(WeierstrassSigma(k,4.0,-1.0))^(n^2) od; # Andrew Hone, Oct 12 2005
    A006720 := proc(n)
        option remember;
        if n <= 3 then
            1;
        else
            (procname(n-1)*procname(n-3)+procname(n-2)^2)/procname(n-4) ;
        end if;
    end proc: # R. J. Mathar, Jul 12 2012
  • Mathematica
    a[0] = a[1] = a[2] = a[3] = 1; a[n_] := a[n] = (a[n - 1] a[n - 3] + a[n - 2]^2)/a[n - 4]; Array[a, 23] (* Robert G. Wilson v, Jul 04 2007 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]a[n-3]+a[n-2]^2)/ a[n-4]},a,{n,30}] (* Harvey P. Dale, Apr 07 2018 *)
    b[ n_] := If[-2<=n<=2, {2, 1, 1, 3, 23}[[n+3]], 2*a[n+2]^3*a[n+3] + a[n+1]^2*(a[n+3]*a[n+4] - a[n+2]*a[n+5])]; a[ n_] := If[OddQ[n], b[(n-3)/2], b[-n/2]]; (* Michael Somos, Feb 28 2022 *)
  • PARI
    a=vector(99);a[1]=a[2]=a[3]=a[4]=1;for(n=5,#a,a[n]=(a[n-1]*a[n-3]+a[n-2]^2)/a[n-4]); a \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    from gmpy2 import divexact
    A006720 = [1, 1, 1, 1]
    for n in range(4, 101):
        A006720.append(divexact(A006720[n-1]*A006720[n-3]+A006720[n-2]**2,A006720[n-4]))
    # Chai Wah Wu, Sep 01 2014
    

Formula

a(n) = a(3-n) = (-1)^n * A006769(2*n-3) for all n in Z.
a(n+1)/a(n) seems to be asymptotic to C^n with C = 1.226.... - Benoit Cloitre, Aug 07 2002. Confirmed by Hone - see below.
The terms of the sequence have the leading order asymptotics log a(n) ~ D n^2 with D = zeta(w1)*k^2/(2*w1) - log|sigma(k)| = 0.10222281... where zeta and sigma are the Weierstrass functions with invariants g2 = 4, g3 = -1, w1 = 1.496729323 is the real half-period of the corresponding elliptic curve, k = -1.134273216 as above. This agrees with Benoit Cloitre's numerical result with C = exp(2D) = 1.2268447... - Andrew Hone, Feb 09 2005
a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4); a(0) = a(1) = a(2) = a(3) = 1; exact formula is a(n) = A*B^n*sigma (z_0+nk)/(sigma (k))^(n^2), where sigma is the Weierstrass sigma function associated to the elliptic curve y^2 = 4*x^3-4*x+1, A = 1/sigma(z_0) = 0.112724016 - 0.824911687*i, B = sigma(k)*sigma (z_0)/sigma (z_0+k) = 0.215971963 + 0.616028193*i, k = 1.859185431, z_0 = 0.204680500 + 1.225694691*i, sigma(k) = 1.555836426, all to 9 decimal places. This is a special case of a general formula for 4th-order bilinear recurrences. The Somos-4 sequence corresponds to the sequence of points (2n-3)P on the curve, where P = (0, 1). - Andrew Hone, Oct 12 2005
a(2*n) = b(-n), a(2*n+1) = b(n-1) where b(n) = A188313(n) for all n in Z. - Michael Somos, Feb 27 2022

A025262 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-1)*a(1) for n >= 4.

Original entry on oeis.org

1, 1, 1, 3, 8, 23, 68, 207, 644, 2040, 6558, 21343, 70186, 232864, 778550, 2620459, 8872074, 30195288, 103246502, 354508628, 1221846856, 4225644866, 14659644348, 51002664023, 177909901566, 622093882290, 2180123564130, 7656055966092
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ascent sequences (A022493) of length n-1 such that the nonzero entries are weakly increasing and no two consecutive entries are both 0. For example a(4) = 3 counts 010, 011, 012 and a(5) = 8 counts 0101, 0102, 0110, 0111, 0112, 0120, 0122, 0123. - David Callan, Nov 25 2021
The o.g.f. y (= x + x^2 + x^3 + ...) of this sequence satisfies y^2 - y = x^3 - x. If y is replaced by -y, then it is the elliptic curve y^2 + y = x^3 - x with LMFDB label 37.a1 (Cremona label 37a1) associated to the Somos-4 sequence via elliptic divisibility sequence A006769. - Michael Somos, Apr 18 2023

Examples

			G.f. = x + x^2 + x^3 + 3*x^4 + 8*x^5 + 23*x^6 + 68*x^7 + 207*x^8 + 644*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 1; Do[aa[[n]] = Sum[aa[[k]] * aa[[n - k]], {k, 1, n - 1}], {n, 4, nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
    Nest[Append[#, #.Reverse[#]] &, {1, 1, 1}, 25] (* Jan Mangaldan, Jul 07 2020 *)
  • PARI
    {a(n) = polcoeff( (1 - sqrt(1 - 4*x + 4*x^3 + x * O(x^n))) / 2, n)}; /* Michael Somos, Aug 04 2000 */

Formula

G.f.: (1 - sqrt(1 - 4*x + 4*x^3)) / 2. Satisfies A(x) - A(x)^2 = x - x^3. - Michael Somos, Aug 04 2000
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example Phi([1]) is the Catalan numbers A000108. The present sequence is Phi([1,1,1]). - Gary W. Adamson, Oct 27 2008
Row sums of A176703 if offset 0. - Michael Somos, Jan 09 2012
a(n+2) = A056010(n) if n >= 0.
a(n) = Sum_{m=0..floor((n-1)/2)} C(n-2*m-1)*binomial(n-2*m,m)*(-1)^m, where C = A000108 are the Catalan numbers. - Vladimir Kruchinin, Jan 26 2013
0 = a(n)*(+16*a(n+1) - 64*a(n+3) + 22*a(n+4)) + a(n+1)*(+32*a(n+2) - 14*a(n+3)) + a(n+2)*(+16*a(n+3) - 10*a(n+4)) + a(n+3)*(+2*a(n+3) + a(n+4)) if n>0. - Michael Somos, Jan 18 2015
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 2*(2*n-9)*a(n-3). - Vaclav Kotesovec, Jan 25 2015
a(n) ~ sqrt(3 - 8*r) * (4 - 4*r^2)^n / (4*sqrt(Pi)*n^(3/2)), where r = 2*sin(arccos(-3^(3/2)/8)/3 - Pi/6)/sqrt(3). - Vaclav Kotesovec, Jun 05 2022

A028940 a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

0, 1, -1, 2, 1, 6, -5, 21, -20, 161, 116, 1357, -3741, 18526, 8385, 480106, -239785, 12551561, -59997896, 683916417, 1849037896, 51678803961, -270896443865, 4881674119706, -16683000076735, 997454379905326
Offset: 1

Views

Author

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the x_n. - N. J. A. Sloane, Jan 27 2022

Examples

			4P = P[4] = [2, -3].
P[1] to P[16] are [0, 0], [1, 0], [-1, -1], [2, -3], [1/4, -5/8], [6, 14], [-5/9, 8/27], [21/25, -69/125], [-20/49, -435/343], [161/16, -2065/64], [116/529, -3612/12167], [1357/841, 28888/24389], [-3741/3481, -43355/205379], [18526/16641, -2616119/2146689], [8385/98596, -28076979/30959144], [480106/4225, 332513754/274625]. - _N. J. A. Sloane_, Jan 27 2022
		

References

  • A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.

Crossrefs

Programs

  • PARI
    \\ from N. J. A. Sloane, Jan 27 2022. To get the first 40 points P[n].
    \\ define curve E
    E = ellinit([0,0,1,-1,0]) \\ y^2+y = x^3-x
    P = vector(100)
    P[1] = [0,0]
    for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
    P

Formula

P = (0, 0), 2P = (1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(-n) = a(n) = - A006769(n-1) * A006769(n+1) for all n in Z. - Michael Somos, Jul 28 2016

A051138 Divisibility sequence associated with elliptic curve y^2 + y = x^3 - x and point (1, 0).

Original entry on oeis.org

0, 1, 1, -1, -5, -4, 29, 129, -65, -3689, -16264, 113689, 2382785, 7001471, -398035821, -7911171596, 43244638645, 6480598259201, 124106986093951, -5987117709349201, -541051130050800400, -4830209396684261199
Offset: 0

Views

Author

Michael Somos, Oct 12 1999

Keywords

Comments

This is a strong divisibility sequence; that is, if n divides m, then a(n) divides a(m) and moreover for all positive integer n,m a(gcd(n, m)) = gcd(a(n), a(m)).
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = -1, z = -5. - Michael Somos, Jul 07 2014
The elliptic curve y^2 + y = x^3 - x has LMFDB label 37.a1 (Cremona label 37a1). - Michael Somos, Feb 07 2024

Examples

			G.f. = x + x^2 - x^3 - 5*x^4 - 4*x^5 + 29*x^6 + 129*x^7 - 65*x^8 + ...
		

Crossrefs

Programs

Formula

a(n) = (a(n-1) * a(n-3) + a(n-2)^2) / a(n-4).
a(n) = (-a(n-1) * a(n-4) + 5 * a(n-2) * a(n-3)) / a(n-5).
a(2*n + 1) = a(n+2) * a(n)^3 - a(n-1) * a(n+1)^3.
a(2*n) = a(n+2) * a(n) * a(n-1)^2 - a(n) * a(n-2) * a(n+1)^2.
a(-n) = -a(n). a(n) = A006769(2*n). a(n)^2 = A028937(n). |a(n)|^3 = A028939(n) for all n in Z.
0 = a(n)*a(n+4) - a(n+1)*a(n+3) - a(n+2)*a(n+2) for all n in Z. - Michael Somos, Jul 07 2014
0 = a(n)*a(n+5) + a(n+1)*a(n+4) - 5*a(n+2)*a(n+3) for all n in Z. - Michael Somos, Jul 07 2014

A028941 Denominator of X-coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 25, 49, 16, 529, 841, 3481, 16641, 98596, 4225, 2337841, 13608721, 67387681, 264517696, 6941055969, 12925188721, 384768368209, 5677664356225, 61935294530404, 49020596163841, 16063784753682169
Offset: 1

Views

Author

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives denominators of the x_n. - N. J. A. Sloane, Jan 27 2022
Squares of terms in A006769 (or A006720).

References

  • G. Everest, A. J. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences: Examples and Applications, AMS Monographs, 2003
  • A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,((c*2e)-f*b+2d^2)/a}; NestList[nxt,{1,1,1,1,4,1},30][[;;,1]] (* Harvey P. Dale, Dec 26 2024 *)
  • PARI
    - see A028940.

Formula

This sequence satisfies the quadratic recurrence relation a(n)a(n-6)=-a(n-1)a(n-5)+2a(n-2)a(n-4)+2a(n-3)^2 which is a generalized Somos-6 relation. - Graham Everest (g.everest(AT)uea.ac.uk), Dec 16 2002
P=(0, 0), 2P=(1, 0), if kP=(a, b) then (k+1)P=(a'=(b^2-a^3)/a^2, b'=-1-b*a'/a).

A056010 Number of words of length n in a simple grammar.

Original entry on oeis.org

1, 1, 3, 8, 23, 68, 207, 644, 2040, 6558, 21343, 70186, 232864, 778550, 2620459, 8872074, 30195288, 103246502, 354508628, 1221846856, 4225644866, 14659644348, 51002664023, 177909901566, 622093882290, 2180123564130, 7656055966092
Offset: 0

Views

Author

Michael Somos, Aug 01 2000

Keywords

Comments

The grammar defines a language L consisting of words from the alphabet S = {e, w, n, s}. If each letter in S is regarded as an integer lattice step, e = (1,0), w = (-1,0), n = (0,1), s = (0,-1), then each word is a path in the two-dimensional integer lattice starting from (0,0), never going below the x-axis and ending on the x-axis. Thus, this is a variant of Motzkin paths with two kinds of level steps. The algebraic definition is L = 1 + Le + Lw + LnLs - w where each word is regarded as a noncommutative monomial with variables in S. Replacing each letter in S by x and L by the g.f. A(x) leads to x + A(x) = (1 + x*A(x))^2. If we let y = x + x*x*A, then y^2 - y = x^3 - x which is an elliptic curve. - Michael Somos, Mar 28 2020
The Hankel number wall for the sequence L(0), L(1), ... has a zigzag diagonal sequence b(0) = 1, b(1) = 1. b(2) = e, b(3) = ew+ns, b(4) = na(ee-ew-ns), ... which is a generalized Somos-5 sequence with b(i)*b(i+5) = -n*s*b(i+1)*b(i+4) + e*n*s*b(i+2)*b(i+3). Define sequence c(0) = 0, c(1) = 1, c(i) = b(i-2) for i>1, and c(i) = -(-n*s)^(-i)*c(-i) if i<0. Then c(i)*c(i+5) = -n*s*c(i+1)*c(i+4) + e*n*s*c(i+2)*c(i+3) for all i in Z. If e=w=n=s=1, then c(i) = A006769(i) * (-1)^[mod(i,4)=3]. - Michael Somos, Oct 14 2024

Examples

			L(0) = 1, L(1) = e, L(2) = ee + ew + ns, L(3) = eee + ewe + nse + eew + eww + nsw + nes + ens.
G.f. = 1 + x + 3*x^2 + 8*x^3 + 23*x^4 + 68*x^5 + 207*x^6 + 644*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x - Sqrt[1 - 4 x + 4 x^3])/(2 x^2), {x, 0, 26}], x] (* Michael De Vlieger, Oct 30 2019 *)
    a[ n_] := SeriesCoefficient[ (2 - 2*x)/(1 - 2*x + (1 - 4*x + 4*x^3)^(1/2)), {x, 0, n}]; (* Michael Somos, Oct 27 2024 *)
    a[ n_] := If[ n<0, 0, SeriesCoefficient[Nest[(1 + x*#)^2 - x&, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, Oct 27 2024 *)
  • PARI
    {a(n) = if( n<0, 0, polcoef( (1 - 2*x - sqrt( 1 - 4*x + 4*x^3 + x^3 * O(x^n)) ) / (2*x^2), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoef( (2 - 2*x)/(1 - 2*x + (1 - 4*x + 4*x^3 + x*O(x^n))^(1/2)), n))}; /* Michael Somos, Oct 27 2024 */

Formula

L = 1 + Le + Lw + LnLs - w.
a(n) = 2*a(n-1) + a(0)*a(n-2) + ... + a(n-2)*a(0) for n>1.
The Somos-4 sequence A006720(n+2) is the Hankel transform of a(n-1). See A001906 for definition of Hankel transform.
Let s(n)= A006769(n). Then 0 = f( -s(n-1) * s(n+1) / s(n)^2, -s(n) * s(n+2) / s(n+1)^2 ) where f(u, v) = u + v - (1 + u*v)^2.
G.f. A(x) satisfies 0 = f(x, A(x)) where f(u, v) = u + v - (1 + u*v)^2.
G.f.: (1 - 2*x - sqrt( 1 - 4*x + 4*x^3) ) / (2*x^2).
From Paul Barry, Mar 04 2010: (Start)
G.f.: ((1-x)/(1-2x))c(x^2(1-x)/(1-2x)^2), c(x) the g.f. of A000108;
a(n) = Sum_{k=0..floor(n/2)} (A000108(k) * Sum_{i=0..k+1} C(k+1,i)*C(n-i,n-2k-i)*(-1)^i*2^(n-2k-i)). (End)
a(n) = A025262(n+2) if n >= 0.
0 = a(n)*(+16*a(n+1) - 64*a(n+3) + 22*a(n+4)) + a(n+1)*(+32*a(n+2) - 14*a(n+3)) + a(n+2)*(+16*a(n+3) - 10*a(n+4)) + a(n+3)*(+2*a(n+3) + a(n+4)) if n>=0. - Michael Somos, Jan 18 2015

A050512 a(n) = (a(n-1)*a(n-3) - a(n-2)^2) / a(n-4), with a(0) = 0, a(1) = a(2) = a(3) = 1, a(4) = -1.

Original entry on oeis.org

0, 1, 1, 1, -1, -2, -3, -1, 7, 11, 20, -19, -87, -191, -197, 1018, 2681, 8191, -5841, -81289, -261080, -620551, 3033521, 14480129, 69664119, -2664458, -1612539083, -7758440129, -37029252553, 181003520899, 1721180313660, 12437589708389, 19206818781913
Offset: 0

Views

Author

Michael Somos, Dec 28 1999

Keywords

Comments

From Paul Barry, May 31 2010: (Start)
a(n+1) is (-1)^binomial(n,2) times the Hankel transform of the sequence with g.f.
1/(1-x/(1+x^2/(1-x^2/(1-2x^2/(1+(3/4)x^2/(1+(2/9)x^2/(1+21)x^2/(1-... where
-1,1,2,-3/4,-2/9,21,... are the x-coordinates of the multiples of z=(0,0) on the elliptic curve E: y^2 - 2xy - y = x^3-x. (End)
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 1, z = -1.
The elliptic curve y^2 + y = x^3 + x^2 (LMFDB label 43.a1) has infinite order point P = (0, 0). The x coordinate of n*P has denominator a(n)^2. - Michael Somos, Feb 14 2023

Examples

			G.f. = x + x^2 + x^3 - x^4 - 2*x^5 - 3*x^6 - x^7 + 7*x^8 + 11*x^9 + 20*x^10 + ...
		

Crossrefs

Cf. A006769.

Programs

  • Haskell
    a050512 n = a050512_list !! n
    a050512_list = 0 : 1 : 1 : 1 : (-1) : zipWith div (zipWith (-) (zipWith (*)
       (drop 4 a050512_list) (drop 2 a050512_list))
         (map (^ 2) (drop 3 a050512_list))) (tail a050512_list)
    -- Reinhard Zumkeller, Nov 02 2011
  • Mathematica
    a[n_?OddQ] := a[n] = a[(n-1)/2]^3*a[(n+3)/2] - a[(n-3)/2]*a[(n+1)/2]^3; a[n_?EvenQ] := a[n] = (a[n/2-1]^2*a[n/2+2] - a[n/2-2]*a[n/2+1]^2)*a[n/2]; a[0] = 0; a[1] = a[2] = a[3] = 1; a[4] = -1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 29 2011 *)
    Join[{0},RecurrenceTable[{a[1]==a[2]==a[3]==1,a[4]==-1,a[n]==(a[n-1] a[n-3]-a[n-2]^2)/a[n-4]},a,{n,30}]] (* Harvey P. Dale, Mar 23 2012 *)
  • PARI
    an=vector(200); for(n=1,4,an[ n ]=[ 1,1,1,-1 ][ n ]); for(n=5, length(an),an[ n ]=(an[ n-1 ]*an[ n-3 ]-an[ n-2 ]^2)/an[ n-4 ]); a(n) =sign(n)*an[ abs(n)+(n==0) ]
    
  • PARI
    {a(n) = my(an); if( n<0, -a(-n), if( n==0, 0, an = vector( max(4, n), i, 1); an[4] = -1; for( k=5, n, an[k] = (an[k-1] * an[k-3] - an[k-2]^2) / an[k-4]); an[n]))}; /* Michael Somos, Jul 07 2014 */
    

Formula

a(2*n + 1) = a(n + 2) * a(n)^3 - a(n - 1) * a(n + 1)^3 for all n in Z.
a(2*n) = a(n + 2) * a(n) * a(n - 1)^2 - a(n) * a(n - 2) * a(n + 1)^2 for all n in Z.
0 = a(n)*a(n+5) - a(n+1)*a(n+4) - a(n+2)*a(n+3) for all n in Z. - Michael Somos, Jul 07 2014
0 = a(n)*a(n+6) + a(n+1)*a(n+5) - 2*a(n+2)*a(n+4) for all n in Z. - Michael Somos, Jul 07 2014
a(n) = -a(-n) for all n in Z. - Michael Somos, Feb 14 2023

A247369 a(n) = (a(n-1) * a(n-3) + (-1)^n * a(n-2)^2) / a(n-4), with a(0) = 0, a(1) = -1, a(2) = a(3) = a(4) = 1, a(9) = 3.

Original entry on oeis.org

0, -1, 1, 1, 1, 0, 1, 1, 1, 3, 4, -5, 1, -7, 9, 8, 25, -23, 49, 87, 16, 295, 529, -903, 841, -1256, 3481, -1495, 16641, -44341, 98596, 217651, 4225, 1058961, 2337841, -5106896, 13608721, 5415345, 67387681, -173830481, 264517696, -2288275633, 6941055969
Offset: 0

Views

Author

Michael Somos, Sep 14 2014

Keywords

Crossrefs

Cf. A006769.

Programs

  • Haskell
    a247369 n = a247369_list !! n
    a247369_list = [0, -1, 1, 1, 1, 0] ++ xs where
       xs = [1, 1, 1, 3] ++ zipWith (flip div) xs (zipWith (+)
                  (zipWith (*) (tail xs) (drop 3 xs))
                  (zipWith (*) (cycle [1, -1]) (map (^ 2) $ drop 2 xs)))
    -- Reinhard Zumkeller, Sep 15 2014
    
  • Magma
    I:=[3, 4, -5, 1]; [0, -1, 1, 1, 1, 0, 1, 1, 1] cat [n le 4 select I[n] else ( Self(n-1)*Self(n-3) + (-1)^n*Self(n-2)^2 )/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 05 2018
  • Mathematica
    Join[{0, -1, 1, 1, 1, 0, 1, 1, 1}, RecurrenceTable[{a[9]==3, a[10]==4, a[11]==-5, a[12]==1, a[n]==(a[n-1]a[n-3] + (-1)^n a[n-2]^2)/a[n-4]}, a, {n, 9, 30}]] (* G. C. Greubel, Aug 05 2018 *)
  • PARI
    {a(n) = my(A = [-1, 1, 1, 1]); n=abs(n); if( n==0, 0, if( n<5, A[n], A = concat(A, vector(n-4)); for(k=5, n, A[k] = if( k==9, 3, (A[k-1] * A[k-3] + (-1)^k * A[k-2]^2) / A[k-4])); A[n]))};
    

Formula

0 = a(n)*a(n+9) + a(n+1)*a(n+8) + a(n+3)*a(n+6) + a(n+4)*a(n+5) for all n in Z.
a(n) = a(-n), a(2*n) = A006769(n)^2 for all n in Z.
Showing 1-10 of 11 results. Next