A007051 a(n) = (3^n + 1)/2.
1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, 797162, 2391485, 7174454, 21523361, 64570082, 193710245, 581130734, 1743392201, 5230176602, 15690529805, 47071589414, 141214768241, 423644304722, 1270932914165, 3812798742494, 11438396227481
Offset: 0
Examples
From _Adi Dani_, May 14 2011: (Start) a(3)=14 because all compositions of even natural numbers into 3 parts <=2 are for 0: (0,0,0) for 2: (0,1,1), (1,0,1), (1,1,0), (0,0,2), (0,2,0), (2,0,0) for 4: (0,2,2), (2,0.2), (2,2,0), (1,1,2), (1,2,1), (2,1,1) for 6: (2,2,2). (End)
References
- J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 47.
- Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 60.
- P. Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 53.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 27.
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 6.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril and Helmut Prodinger, Enumeration of partial Lukasiewicz paths, arXiv:2205.01383 [math.CO], 2022.
- Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, preprint, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015), Paper #P1.58.
- Beáta Bényi and Toshiki Matsusaka, Extensions of the combinatorics of poly-Bernoulli numbers, arXiv:2106.05585 [math.CO], 2021.
- Steve Butler and Ron Graham, Enumerating (multiplex) juggling sequences, arXiv:0801.2597 [math.CO], 2008.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Francis Castro-Velez, Alexander Diaz-Lopez, Rosa Orellana, Jose Pastrana, and Rita Zevallos, Number of permutations with same peak set for signed permutations, arXiv preprint arXiv: 1308.6621 [math.CO], 2013.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, and Darleen Perez-Lavin, Peaks Sets of Classical Coxeter Groups, arXiv preprint arXiv:1505.04479 [math.GR], 2015.
- Paul Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
- Dmitry Efimov, Determinant of Three-Layer Toeplitz Matrices, Journal of Integer Sequences, 24 (2021), Article 21.9.7.
- Petr Gregor, Torsten Mütze, and Namrata, Combinatorial generation via permutation languages. VI. Binary trees, arXiv:2306.08420 [cs.DM], 2023.
- Petr Gregor, Torsten Mütze, and Namrata, Pattern-Avoiding Binary Trees-Generation, Counting, and Bijections, Leibniz Int'l Proc. Informatics (LIPIcs), 34th Int'l Symp. Algor. Comp. (ISAAC 2023). See p. 33.13.
- Frank K. Hwang and Colin L. Mallows, Enumerating nested and consecutive partitions, Preprint. (Annotated scanned copy)
- Frank K. Hwang and Colin L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 163
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 454, divided by 2.
- Andreas M. Hinz, Sandi Klavžar, Uroš Milutinović, and Ciril Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 100. Book's website
- Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, arXiv preprint arXiv:1201.1323 [math.CO], 2012.
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243 [math.CO], 2012. - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 15 (2015), #A16. (arXiv:1302.2274)
- Craig Knecht, Number of tilings for a repetitive 4 sphinx tile shape.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., 12(12) (2019), 829-845.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, 12 (2009), Article 09.2.6.
- Abdallah Laradji and Abdullahi Umar, Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra, 278, (2004), 342-359.
- Abdallah Laradji and Abdullahi Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq., 7 (2004), 04.3.8.
- Erkko Lehtonen and Tamás Waldhauser, Associative spectra of graph algebras I. Foundations, undirected graphs, antiassociative graphs, arXiv:2011.07621 [math.CO], 2020.
- Kin Y. Li, Problem 83, Mathematical Excalibur, 4 (1999), Number 4, p. 3.
- Toufik Mansour and Mark Shattuck, Avoidance of classical patterns by Catalan sequences, Filomat 31, No. 3, 543-558 (2017). Theorem 3.7.
- Toufik Mansour and Mark Shattuck, On ascent sequences avoiding 021 and a pattern of length four, arXiv:2507.17947 [math.CO], 2025. See p. 21.
- Nelma Moreira and Rogerio Reis, On the density of languages representing finite set partitions, Technical Report DCC-2004-07, August 2004, DCC-FC& LIACC, Universidade do Porto.
- Nelma Moreira and Rogério Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, 8 (2005), Article 05.2.8.
- David Nečas and Ivan Ohlídal, Consolidated series for efficient calculation of the reflection and transmission in rough multilayers, Optics Express, 22(4) (2014); see Table 1.
- Lara Pudwell, Pattern avoidance in trees, (slides from a talk, mentions many sequences), 2012.
- Lara Pudwell, Pattern-avoiding ascent sequences, Slides from a talk, 2015.
- Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, Slides, Permutation Patterns 2014, East Tennessee State University Jul 07 2014.
- Mark Shattuck, Enumeration of consecutive patterns in flattened Catalan words, arXiv:2502.10661 [math.CO], 2025. See p. 1.
- Eric Weisstein's World of Mathematics, Mephisto Waltz Sequence.
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Crossrefs
Programs
-
Magma
[(3^n+1)/2: n in [0..30]]; // Vincenzo Librandi, Nov 23 2015
-
Maple
ZL := [S, {S=Union(Sequence(Z), Sequence(Union(Z, Z, Z)))}, unlabeled]: seq(combstruct[count](ZL, size=n)/2, n=0..25); # Zerinvary Lajos, Jun 19 2008
-
Mathematica
Table[(3^n + 1)/2, {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *) CoefficientList[Series[(1 - 2 x)/((1 - x) (1 - 3 x)), {x, 0, 40}], x] (* Harvey P. Dale, Jun 20 2011 *) LinearRecurrence[{4, -3}, {2, 5}, {0, 28}] (* Arkadiusz Wesolowski, Oct 30 2012 *)
-
PARI
a(n)=(3^n+1)>>1 \\ Charles R Greathouse IV, Jun 10 2011
-
Python
def A007051(n): return 3**n+1>>1 # Chai Wah Wu, Nov 14 2022
Formula
a(n) = 3*a(n-1) - 1.
Binomial transform of Chebyshev coefficients A011782. - Paul Barry, Mar 16 2003
From Paul Barry, Mar 16 2003: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1, a(0)=1, a(1)=2.
G.f.: (1 - 2*x)/((1 - x)*(1 - 3*x)). (End)
E.g.f.: exp(2*x)*cosh(x). - Paul Barry, Apr 05 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k). - Paul Barry, May 08 2003
This sequence is also the partial sums of the first 3 Stirling numbers of second kind: a(n) = S(n+1, 1) + S(n+1, 2) + S(n+1, 3) for n >= 0; alternatively it is the number of partitions of [n+1] into 3 or fewer parts. - Mike Zabrocki, Jun 21 2004
For c=3, a(n) = (c^n)/c! + Sum_{k=1..c-2}((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))) or = Sum_{k=1..c} g(k, c)*k^n where g(1, 1) = 1, g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! for c > 1, and g(k, c) = g(k-1, c-1)/k for c > 1 and 2 <= k <= c. - Nelma Moreira, Oct 10 2004
The i-th term of the sequence is the entry (1, 1) in the i-th power of the 2 X 2 matrix M = ((2, 1), (1, 2)). - Simone Severini, Oct 15 2005
If p[i]=fibonacci(2i-3) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
INVERT transform of A001519: [1, 1, 2, 5, 13, 34, ...]. - Gary W. Adamson, Jun 13 2011
a(n) = M^n*[1,1,1,0,0,0,...], leftmost column term; where M = an infinite bidiagonal matrix with all 1's in the superdiagonal and (1,2,3,...) in the main diagonal and the rest zeros. - Gary W. Adamson, Jun 23 2011
a(n) = M^n*[1,1,1,0,0,0,...], top entry term; where M is an infinite bidiagonal matrix with all 1's in the superdiagonal, (1,2,3,...) as the main diagonal, and the rest zeros. - Gary W. Adamson, Jun 24 2011
a(n) = A201730(n,0). - Philippe Deléham, Dec 05 2011
From Dmitry Efimov, Oct 29 2021: (Start)
a(2*m+1) = Product_{k=-m..m} (2+i*tan(Pi*k/(2*m+1))),
a(2*m) = Product_{k=-m..m-1} (2+i*tan(Pi*(2*k+1)/(4*m))),
where i is the imaginary unit. (End)
Comments