A007531 a(n) = n*(n-1)*(n-2) (or n!/(n-3)!).
0, 0, 0, 6, 24, 60, 120, 210, 336, 504, 720, 990, 1320, 1716, 2184, 2730, 3360, 4080, 4896, 5814, 6840, 7980, 9240, 10626, 12144, 13800, 15600, 17550, 19656, 21924, 24360, 26970, 29760, 32736, 35904, 39270, 42840, 46620, 50616, 54834, 59280, 63960, 68880
Offset: 0
References
- R. K. Guy, Unsolved Problems in Theory of Numbers, Section D25.
- L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 40.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. Math., 14:42-4. See 1st polynomial p. 5.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Milan Janjic and B. Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Michael Penn, A natural nested root, YouTube video, 2022.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv:1406.3081 [math.CO], 2014-2015.
- Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv:1508.07894 [math.NT], 2015.
- Dennis Walsh, Width-restricted finite functions
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Haskell
a007531 n = product [n-2..n] -- Reinhard Zumkeller, Jul 04 2012
-
Magma
[n*(n-1)*(n-2): n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
Maple
[seq(6*binomial(n,3),n=0..41)]; # Zerinvary Lajos, Nov 24 2006
-
Mathematica
Table[n^3 - 3n^2 + 2n, {n, 0, 42}] Table[FactorialPower[n, 3], {n, 0, 42}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
-
PARI
a(n)=n*(n-1)*(n-2)
-
Sage
[n*(n-1)*(n-2) for n in range(40)] # G. C. Greubel, Feb 11 2019
Formula
a(n) = 6*A000292(n-2).
a(n) = Sum_{i=1..n} polygorial(3,i) where polygorial(3,i) = A028896(i-1). - Daniel Dockery (peritus(AT)gmail.com), Jun 16 2003
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6, n > 2. - Zak Seidov, Feb 09 2006
G.f.: 6*x^2/(1-x)^4.
a(-n) = -a(n+2).
1/6 + 3/24 + 5/60 + ... = Sum_{k>=1} (2*k-1)/(k*(k+1)*(k+2)) = 3/4. [Jolley Eq. 213]
a(n+1) = n^3 - n. - Mohammad K. Azarian, Jul 26 2007
E.g.f.: x^3*exp(x). - Geoffrey Critzer, Feb 08 2009
If the first 0 is eliminated, a(n) = floor(n^5/(n^2+1)). - Gary Detlefs, Feb 11 2010
1/6 + 1/24 + 1/60 + ... = Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4. - Mohammad K. Azarian, Dec 29 2010
a(0) = 0, a(n) = a(n-1) + 3*(n-1)*(n-2). - Jean-François Alcover, Jan 08 2013
(a(n+1) - a(n))/6 = A000217(n-2) for n > 0. - J. M. Bergot, Jul 30 2013
Partial sums of A028896. - R. J. Mathar, Aug 28 2014
1/6 + 1/24 + 1/60 + ... + 1/(n*(n+1)*(n+2)) = n*(n+3)/(4*(n+1)*(n+2)). - Christina Steffan, Jul 20 2015
a(n)*a(n+1) + A000096(n-3)^2 = m^2 (a perfect square), m = ((a(n)+a(n+1))/2)-n. - Ezhilarasu Velayutham, May 21 2019
Sum_{n>=3} (-1)^(n+1)/a(n) = 2*log(2) - 5/4. - Amiram Eldar, Jul 02 2020
For n >= 3, (a(n) + (a(n) + (a(n) + ...)^(1/3))^(1/3))^(1/3) = n - 1. - Paolo Xausa, Apr 09 2022
Comments