cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A146541 Binomial transform of A010688.

Original entry on oeis.org

1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Philippe Deléham, Oct 31 2008

Keywords

Comments

Hankel transform is := 1,-48,0,0,0,0,0,0,0,...

Crossrefs

Programs

  • Mathematica
    Join[{1},2^Range[3,40]] (* Harvey P. Dale, Feb 28 2016 *)
  • PARI
    Vec((1+6*x)/(1-2*x) + O(x^50)) \\ Colin Barker, Mar 17 2016

Formula

a(0)=1, a(n) = 2^(n+2) for n>0.
a(n) = Sum_{k, 0..n} A109466(n,k)*A146534(k).
a(n) = A132479(n), n>1. - R. J. Mathar, Nov 02 2008
G.f.: (1+6*x) / (1-2*x). - Colin Barker, Mar 17 2016

Extensions

Corrected and extended by Harvey P. Dale, Feb 28 2016

A036543 a(n) = T(3,n), array T given by A048471.

Original entry on oeis.org

1, 9, 33, 105, 321, 969, 2913, 8745, 26241, 78729, 236193, 708585, 2125761, 6377289, 19131873, 57395625, 172186881, 516560649, 1549681953, 4649045865, 13947137601, 41841412809, 125524238433, 376572715305, 1129718145921
Offset: 0

Views

Author

Keywords

Crossrefs

n-th difference of a(n), a(n-1), ..., a(0) is 2^(n+2) for n=1, 2, 3, ...
Cf. A146541 (inv. bin. transf.)

Programs

  • Magma
    [4*3^n-3: n in [0..30]]; // Vincenzo Librandi, Nov 11 2011
    
  • Mathematica
    4*3^Range[0,25]-3 (* or *) LinearRecurrence[{4,-3},{1,9},25] (* Harvey P. Dale, Aug 16 2011 *)
  • PARI
    vector(30, n, n--; 4*3^n-3) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [4*3^n-3 for n in range(30)] # G. C. Greubel, Nov 23 2018

Formula

Binomial transform of A084242. Second binomial transform of periodic sequence A010688. - Paul Barry, May 23 2003
From Paul Barry, May 23 2003: (Start)
a(n) = 4*3^n - 3;
G.f.: (1+5*x)/((1-x)*(1-3*x));
E.g.f.: 4*exp(3*x) - 3*exp(x). (End)
a(n) = 4*a(n-1) - 3*a(n-2); a(0)=1, a(1)=9. - Harvey P. Dale, Aug 16 2011
a(n) = 3*a(n-1) + 6. - Vincenzo Librandi, Nov 11 2011
a(n) = A171498(n) - 2. - Philippe Deléham, Apr 13 2013

A176415 Periodic sequence: repeat 7,1.

Original entry on oeis.org

7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7
Offset: 0

Views

Author

Klaus Brockhaus, Apr 17 2010

Keywords

Comments

Interleaving of A010727 and A000012.
Also continued fraction expansion of (7+sqrt(77))/2.
Also decimal expansion of 71/99.
Essentially first differences of A047521.
Binomial transform of A176414.
Inverse binomial transform of 2*A020707 preceded by 7.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 4*x^3 + 10*x^4 + 10*x^5 + ... is the o.g.f. for A058187. - Peter Bala, Mar 13 2015

Crossrefs

Cf. A010727 (all 7's sequence), A000012 (all 1's sequence), A092290 (decimal expansion of (7+sqrt(77))/2), A010688 (repeat 1, 7), A047521 (congruent to 0 or 7 mod 8), A176414 (expansion of (7+8*x)/(1+2*x)), A020707 (2^(n+2)), A058187.

Programs

  • Magma
    &cat[ [7, 1]: n in [0..52] ];
    [ 4+3*(-1)^n: n in [0..104] ];
    
  • Mathematica
    PadRight[{},120,{7,1}] (* Harvey P. Dale, Dec 30 2018 *)
  • PARI
    a(n)=7-n%2*6 \\ Charles R Greathouse IV, Oct 28 2011

Formula

a(n) = 4+3*(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 7, a(1) = 1.
a(n) = -a(n-1)+8 for n > 0; a(0) = 7.
a(n) = 7*((n+1) mod 2)+(n mod 2).
a(n) = A010688(n+1).
G.f.: (7+x)/(1-x^2).
Dirichglet g.f.: (1+6*2^(-s))*zeta(s). - R. J. Mathar, Apr 06 2011
Multiplicative with a(2^e) = 7, and a(p^e) = 1 for p >= 3. - Amiram Eldar, Jan 01 2023

A132728 Triangle T(n, k) = 4 - 3*(-1)^k, read by rows.

Original entry on oeis.org

1, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 17 2007

Keywords

Examples

			Triangle begins as:
  1;
  1, 7;
  1, 7, 1;
  1, 7, 1, 7;
  1, 7, 1, 7, 1;
  1, 7, 1, 7, 1, 7;
  1, 7, 1, 7, 1, 7, 1;
  1, 7, 1, 7, 1, 7, 1, 7;
  1, 7, 1, 7, 1, 7, 1, 7, 1;
  1, 7, 1, 7, 1, 7, 1, 7, 1, 7;
  1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1;
		

Crossrefs

Programs

  • Magma
    [4 -3*(-1)^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 14 2021
  • Mathematica
    Table[PadRight[{},n,{1,7}],{n,20}]//Flatten (* Harvey P. Dale, Aug 02 2019 *)
    Table[4 -3*(-1)^k, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
  • Sage
    flatten([[4 -3*(-1)^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
    

Formula

From G. C. Greubel, Feb 14 2021: (Start)
T(n, k) = 4 - 3*(-1)^k.
Sum_{k=0..n} T(n, k) = (8*n + 5 - 3*(-1)^n)/2 = A047393(n+2). (End)
Bivariate g.f.: (1 + 7*x*y)/((1 - x)*(1 - x*y)*(1 + x*y)). - J. Douglas Morrison, Jul 19 2021

Extensions

Edited and corrected by Joerg Arndt, Dec 26 2018
Offset and title changed by G. C. Greubel, Feb 14 2021

A146534 a(n) = 4*C(2n,n) - 3*0^n.

Original entry on oeis.org

1, 8, 24, 80, 280, 1008, 3696, 13728, 51480, 194480, 739024, 2821728, 10816624, 41602400, 160466400, 620470080, 2404321560, 9334424880, 36300541200, 141381055200, 551386115280, 2153031497760, 8416395854880, 32933722910400, 128990414732400, 505642425751008, 1983674131792416
Offset: 0

Views

Author

Philippe Deléham, Oct 31 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=4*Binomial[2n,n]-3*KroneckerDelta[n,0]; Array[a,27,0] (* Stefano Spezia, Feb 14 2025 *)

Formula

a(n) = Sum_{k=0..n} A039599(n,k)*A010688(k).
From Stefano Spezia, Feb 14 2025: (Start)
G.f.: 4/sqrt(1 - 4*x) - 3.
E.g.f.: 4*exp(2*x)*BesselI(0, 2*x) - 3. (End)

Extensions

a(22)-a(26) from Stefano Spezia, Feb 14 2025

A280173 a(0) = 1, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [5, -4].

Original entry on oeis.org

1, 7, 10, 25, 46, 97, 190, 385, 766, 1537, 3070, 6145, 12286, 24577, 49150, 98305, 196606, 393217, 786430, 1572865, 3145726, 6291457, 12582910, 25165825, 50331646, 100663297, 201326590, 402653185, 805306366, 1610612737, 3221225470, 6442450945, 12884901886
Offset: 0

Views

Author

Paul Curtz, Dec 28 2016

Keywords

Comments

a(n) mod 9 = period 2: repeat [1, 7].
The last digit from 7 is of period 4: repeat [7, 0, 5, 6].
The bisection A096045 = 1, 10, 46, ... is based on Bernoulli numbers.
a(n) is a companion to A051049(n).
With an initial 0, A051049(n) is an autosequence of the first kind.
With an initial 2, this sequence is an autosequence of the second kind.
See the reference.
Difference table:
1, 7, 10, 25, 46, 97, ... = this sequence.
6, 3, 15, 21, 51, 93, ... = 3*A014551(n)
-3, 12, 6, 30, 42, 102, ... = -3 followed by 6*A014551(n).
The main diagonal of the difference table gives A003945: 1, 3, 6, 12, 24, ...

Examples

			a(0) = 1, a(1) = 2*1 + 5 = 7, a(2) = 2*7 - 4 = 10, a(3) = 2*10 + 5 = 25.
		

Crossrefs

Programs

  • Maple
    seq(3*2^n-(-1)^n*(1+irem(n+1,2)),n=0..32); # Peter Luschny, Dec 29 2016
  • Mathematica
    LinearRecurrence[{2,1,-2},{1,7,10},50] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    Vec((1 + 5*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 28 2016

Formula

a(2n) = 3*4^n - 2, a(2n+1) = 6*4^n + 1.
a(n+2) = a(n) + 9*2^n, a(0) = 1, a(1) = 7.
a(n) = 2*A051049(n+1) - A051049(n).
From Colin Barker, Dec 28 2016: (Start)
a(n) = 3*2^n - 2 for n even.
a(n) = 3*2^n + 1 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2.
G.f.: (1 + 5*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
(End)

A133190 a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3).

Original entry on oeis.org

1, 3, 3, 5, 13, 27, 51, 101, 205, 411, 819, 1637, 3277, 6555, 13107, 26213, 52429, 104859, 209715, 419429, 838861, 1677723, 3355443, 6710885, 13421773, 26843547, 53687091, 107374181, 214748365, 429496731, 858993459, 1717986917, 3435973837
Offset: 0

Views

Author

Paul Curtz, Dec 17 2007

Keywords

Programs

Formula

From R. J. Mathar, Jan 13 2008: (Start)
O.g.f.: (2*x+1)*(x-1)/((2*x-1)*(x^2+1)).
a(n) = (4*2^n + (-1)^floor(n/2)*A010688(n))/5. (End)

A138122 Cousin primes, the lower of which is 7 (mod 10).

Original entry on oeis.org

7, 11, 37, 41, 67, 71, 97, 101, 127, 131, 277, 281, 307, 311, 397, 401, 457, 461, 487, 491, 757, 761, 877, 881, 907, 911, 937, 941, 967, 971, 1087, 1091, 1297, 1301, 1447, 1451, 1567, 1571, 1597, 1601, 1867, 1871, 2137, 2141, 2347, 2351, 2377, 2381, 2437
Offset: 1

Views

Author

Roger L. Bagula, May 04 2008

Keywords

Comments

Start from the intersection of A023200 and A030432, then add the associated members of A046132. The last digits are obviously periodic as A010688. - R. J. Mathar, Nov 26 2008

Crossrefs

Programs

  • Mathematica
    a[0] = 7; a[n_] := a[n] = a[n - 1] + 10; Flatten[Table[If[PrimeQ[a[n]] && PrimeQ[a[n] + 4], {a[n],a[n] + 4}, {}], {n, 0, 1000}]]

Extensions

Replaced Mathematica definition by humanly readable phrase. - R. J. Mathar, Nov 26 2008

A173261 Array T(n,k) read by antidiagonals: T(n,2k)=1, T(n,2k+1)=n, n>=2, k>=0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 3, 1, 1, 6, 1, 4, 1, 2, 1, 7, 1, 5, 1, 3, 1, 1, 8, 1, 6, 1, 4, 1, 2, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2
Offset: 2

Views

Author

Paul Curtz, Feb 14 2010

Keywords

Comments

One may define another array B(n,0) = -1, B(n,k) = T(n,k-1) + 2*B(n,k-1), n>=2, which also starts in columns k>=0, as follows:
-1, -1, 0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364 ...: A084639;
-1, -1, 1, 3, 9, 19, 41, 83, 169, 339, 681, 1363, 2729;
-1, -1, 2, 5, 14, 29, 62, 125, 254, 509, 1022, 2045, 4094;
-1, -1, 3, 7, 19, 39, 83, 167, 339, 679, 1363, 2727, 5459 ...: -A173114;
B(n,k) = (n-1)*A001045(k) - T(n,k).
First differences are B(n,k+1) - B(n,k) = (n-1)*A001045(k).

Examples

			The array T(n,k) starts in row n=2 with columns k>=0 as:
  1,  2, 1,  2, 1,  2, 1,  2, 1,  2, 1,  2 ... A000034;
  1,  3, 1,  3, 1,  3, 1,  3, 1,  3, 1,  3 ... A010684;
  1,  4, 1,  4, 1,  4, 1,  4, 1,  4, 1,  4 ... A010685;
  1,  5, 1,  5, 1,  5, 1,  5, 1,  5, 1,  5 ... A010686;
  1,  6, 1,  6, 1,  6, 1,  6, 1,  6, 1,  6 ... A010687;
  1,  7, 1,  7, 1,  7, 1,  7, 1,  7, 1,  7 ... A010688;
  1,  8, 1,  8, 1,  8, 1,  8, 1,  8, 1,  8 ... A010689;
  1,  9, 1,  9, 1,  9, 1,  9, 1,  9, 1,  9 ... A010690;
  1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 ... A010691.
Antidiagonal triangle begins as:
  1;
  1,  2;
  1,  3,  1;
  1,  4,  1,  2;
  1,  5,  1,  3,  1;
  1,  6,  1,  4,  1,  2;
  1,  7,  1,  5,  1,  3,  1;
  1,  8,  1,  6,  1,  4,  1,  2;
  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 13,  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 14,  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= (1/2)*((n+3) - (n+1)*(-1)^k);
    Table[T[n-k, k], {n,2,17}, {k,2,n}]//Flatten (* G. C. Greubel, Dec 03 2021 *)
  • Sage
    flatten([[(1/2)*((n-k+3) - (n-k+1)*(-1)^k) for k in (2..n)] for n in (2..17)]) # G. C. Greubel, Dec 03 2021

Formula

From G. C. Greubel, Dec 03 2021: (Start)
T(n, k) = (1/2)*((n+3) - (n+1)*(-1)^k).
Sum_{k=0..n} T(n-k, k) = A024206(n).
Sum_{k=0..floor((n+2)/2)} T(n-2*k+2, k) = (1/16)*(2*n^2 4*n -5*(1 +(-1)^n) + 4*sin(n*Pi/2)) (diagonal sums).
T(2*n-2, n) = A093178(n). (End)

A267317 a(n) = final digit of 2^n-1.

Original entry on oeis.org

0, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Comments

Decimal expansion of 25/1818.
Period 4: repeat [1, 3, 7, 5] for n > 0.

Crossrefs

Programs

  • Magma
    [0] cat &cat[[1, 3, 7, 5]^^25]; // Bruno Berselli, Jan 13 2016
    
  • Maple
    A267317:=n->(2^n-1) mod 10: seq(A267317(n), n=0..150); # Wesley Ivan Hurt, Jun 15 2016
  • Mathematica
    Table[Mod[2^n - 1, 10], {n, 0, 120}]
  • PARI
    a(n) = if(n==0, 0, if(n%4==0, 5, if(n%4==1, 1, if(n%4==2, 3, if(n%4==3, 7))))) \\ Felix Fröhlich, Jan 19 2016
    
  • PARI
    a(n) = lift(Mod(2^n-1, 10)) \\ Felix Fröhlich, Jan 19 2016

Formula

G.f.: x*(1 + 2*x + 5*x^2)/(1 - x + x^2 - x^3).
a(n) = A010879(A000225(n)).
a(n) = A000689(n) - 1.
a(n) = (1+(-1)^n)*(-1)^(n*(n-1)/2)/2 + 3*(1-(-1)^n)*(-1)^(n*(n+1)/2)/2 + 4 for n > 0, a(0) = 0. [Bruno Berselli, Jan 13 2016]
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = a(n-4) for n>4.
a(2k+2) = A010703(k), a(2k+1) = A010688(k). (End)
From Wesley Ivan Hurt, Jul 06 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n > 3.
a(n) = 4 + cos(n*Pi/2) - 3*sin(n*Pi/2) for n > 0. (End)
E.g.f.: -5 + cos(x) - 3*sin(x) + 4*exp(x). - Ilya Gutkovskiy, Jul 06 2016
Showing 1-10 of 11 results. Next