A262977
a(n) = binomial(4*n-1,n).
Original entry on oeis.org
1, 3, 21, 165, 1365, 11628, 100947, 888030, 7888725, 70607460, 635745396, 5752004349, 52251400851, 476260169700, 4353548972850, 39895566894540, 366395202809685, 3371363686069236, 31074067324187580, 286845713747883300, 2651487106659130740, 24539426037817994160
Offset: 0
-
[Binomial(4*n-1,n): n in [0..20]]; // Vincenzo Librandi, Oct 06 2015
-
Table[Binomial[4 n - 1, n], {n, 0, 40}] (* Vincenzo Librandi, Oct 06 2015 *)
-
B(x):=sum(binomial(4*n-1,n-1)*3/(4*n-1)*x^n,n,1,30);
taylor(x*diff(B(x),x,1)/B(x),x,0,20);
-
a(n) = binomial(4*n-1,n); \\ Michel Marcus, Oct 06 2015
A348614
Numbers k such that the k-th composition in standard order has sum equal to twice its alternating sum.
Original entry on oeis.org
0, 9, 11, 14, 130, 133, 135, 138, 141, 143, 148, 153, 155, 158, 168, 177, 179, 182, 188, 208, 225, 227, 230, 236, 248, 2052, 2057, 2059, 2062, 2066, 2069, 2071, 2074, 2077, 2079, 2084, 2089, 2091, 2094, 2098, 2101, 2103, 2106, 2109, 2111, 2120, 2129, 2131
Offset: 1
The terms together with their binary indices begin:
0: ()
9: (3,1)
11: (2,1,1)
14: (1,1,2)
130: (6,2)
133: (5,2,1)
135: (5,1,1,1)
138: (4,2,2)
141: (4,1,2,1)
143: (4,1,1,1,1)
148: (3,2,3)
153: (3,1,3,1)
155: (3,1,2,1,1)
158: (3,1,1,1,2)
The unordered case (partitions) is counted by
A000712, reverse
A006330.
These compositions are counted by
A262977.
Except for 0, a subset of
A345917 (which is itself a subset of
A345913).
A000346 = even-length compositions with alt sum != 0, complement
A001700.
A034871 counts compositions of 2n with alternating sum 2k.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A116406 counts compositions with alternating sum >=0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
A345197 counts compositions by length and alternating sum.
Cf.
A008549,
A013777,
A027306,
A058622,
A088218,
A114121,
A120452,
A126869,
A163493,
A294175,
A344604.
-
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,1000],Total[stc[#]]==2*ats[stc[#]]&]
A161736
Denominators of the column sums of the BG2 matrix.
Original entry on oeis.org
1, 9, 75, 1225, 19845, 160083, 1288287, 41409225, 1329696225, 10667118605, 85530896451, 1371086188563, 21972535073125, 176021737014375, 1409850293610375, 90324408810638025, 5786075364399106425, 46326420401234675625, 370882277949065911875, 5938020471163465810125
Offset: 2
sb(2) = 2; sb(3) = 16/9; sb(4) = 128/75; sb(5) = 2048/1225; etc..
-
[Denominator((2^(4*n-5)*(Factorial(n-1))^4)/((n-1)*(Factorial(2*n-2))^2)): n in [2..20]]; // G. C. Greubel, Sep 26 2018
-
nmax := 18; for n from 0 to nmax do A001818(n) := (doublefactorial(2*n-1))^2 od: for n from 0 to nmax do A008956(n, 0):=1 od: for n from 0 to nmax do A008956(n, n) := A001818(n) od: for n from 1 to nmax do for m from 1 to n-1 do A008956(n, m) := (2*n-1)^2*A008956(n-1, m-1) + A008956(n-1, m) od: od: for n from 1 to nmax do for m from 0 to n do s(n, m):=0; s(n, m) := s(n, m)+ sum((-1)^k1*A008956(n, n-k1), k1=0..n-m): od: sb1(n+1) := sum(s(n, k1), k1=1..n) * 2/A001818(n); od: seq(sb1(n), n=2..nmax); # End program 1
nmax1 := nmax; for n from 0 to nmax1 do A001147(n):= doublefactorial(2*n-1) od: for n from 0 to nmax1/2 do A133221(2*n+1) := A001147(n); A133221(2*n) := A001147(n) od: for n from 0 to nmax1 do A002474(n) := 2^(2*n+1)*n!*(n+1)! od: for n from 1 to nmax1 do A161738(n) := ((product((2*n-3-2*k1), k1=0..floor(n/2-1)))) od: for n from 2 to nmax1 do sb2(n) := A002474(n-2) / (A161738(n)*A133221(n-1))^2 od: seq(sb2(n), n=2..nmax1); # End program 2
# Above Maple programs edited by Johannes W. Meijer, Sep 25 2012
r := n -> (1/Pi)*(2*n - 2)*((n - 3/2)!/(n - 1)!)^2: a := n -> numer(simplify(r(n))):
seq(a(n), n = 1..21); # Peter Luschny, Feb 12 2025
-
sb[2]=2; sb[n_] := sb[n] = sb[n-1]*4*(n-1)*(n-2)/(2n-3)^2; Table[sb[n] // Denominator, {n, 2, 20}] (* Jean-François Alcover, Aug 14 2017 *)
-
{a(n) = if( n<2, 0, n--; numerator( binomial( 2*n, n)^2 * n / 2^(n+1) ))}; /* Michael Somos, May 09 2011 */
A195156
a(n) = (16^n-1)/3.
Original entry on oeis.org
0, 5, 85, 1365, 21845, 349525, 5592405, 89478485, 1431655765, 22906492245, 366503875925, 5864062014805, 93824992236885, 1501199875790165, 24019198012642645, 384307168202282325, 6148914691236517205, 98382635059784275285, 1574122160956548404565
Offset: 0
-
[(16^n-1)/3:n in [0..20]]; // Vincenzo Librandi, Sep 20 2011
-
A195156:=n->(16^n-1)/3; seq(A195156(k), k=0..50); # Wesley Ivan Hurt, Oct 24 2013
-
Table[(16^n - 1)/3, {n, 0, 63}] (* Wesley Ivan Hurt, Oct 24 2013 *)
-
for(n=0,50, print1((16^n - 1)/3, ", ")) \\ G. C. Greubel, Oct 11 2017
A241955
a(n) = 2^(4*n+3) - 1.
Original entry on oeis.org
7, 127, 2047, 32767, 524287, 8388607, 134217727, 2147483647, 34359738367, 549755813887, 8796093022207, 140737488355327, 2251799813685247, 36028797018963967, 576460752303423487, 9223372036854775807, 147573952589676412927, 2361183241434822606847, 37778931862957161709567
Offset: 0
-
[2^(4*n+3)-1 : n in [0..20]]; // Wesley Ivan Hurt, Aug 15 2014
-
A241955:=n->2^(4*n+3)-1: seq(A241955(n), n=0..20); # Wesley Ivan Hurt, Aug 15 2014
-
Table[2^(4n + 3) - 1, {n, 0, 29}]
2^(4 Range[0, 20] + 3) - 1 (* Wesley Ivan Hurt, Aug 15 2014 *)
-
vector(40, n, 2^(4*n-1)-1) \\ Derek Orr, Aug 11 2014
-
Vec((8*x+7)/((x-1)*(16*x-1)) + O(x^100)) \\ Colin Barker, Aug 11 2014
A013793
a(n) = 10^(4*n + 3).
Original entry on oeis.org
1000, 10000000, 100000000000, 1000000000000000, 10000000000000000000, 100000000000000000000000, 1000000000000000000000000000, 10000000000000000000000000000000, 100000000000000000000000000000000000, 1000000000000000000000000000000000000000
Offset: 0
-
[10^(4*n+3): n in [0..10]]; // Vincenzo Librandi, Jun 28 2011
-
10^(4*Range[0, 10] + 3) (* or *)
NestList[10000*# &, 1000, 10] (* Paolo Xausa, Jul 21 2025 *)
-
makelist(10^(4*n+3),n,0,20); /* Martin Ettl, Oct 21 2012 */
A013813
a(n) = 20^(4*n + 3).
Original entry on oeis.org
8000, 1280000000, 204800000000000, 32768000000000000000, 5242880000000000000000000, 838860800000000000000000000000, 134217728000000000000000000000000000, 21474836480000000000000000000000000000000, 3435973836800000000000000000000000000000000000
Offset: 0
-
[20^(4*n+3): n in [0..15]]; // Vincenzo Librandi, Jul 06 2011
-
20^(4*Range[0, 10] + 3) (* or *)
NestList[160000*# &, 8000, 10] (* Paolo Xausa, Jul 21 2025 *)
Showing 1-7 of 7 results.
Comments