cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A017173 a(n) = 9*n + 1.

Original entry on oeis.org

1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, 460, 469, 478
Offset: 0

Views

Author

Keywords

Comments

Also all the numbers with digital root 1; A010888(a(n)) = 1. - Rick L. Shepherd, Jan 12 2009
A116371(a(n)) = A156144(a(n)); positions where records occur in A156144: A156145(n+1) = A156144(a(n)). - Reinhard Zumkeller, Feb 05 2009
If A=[A147296] 9*n^2+2*n (n>0, 11, 40, 87, ...); Y=[A010701] 3 (3, 3, 3, ...); X=[A017173] 9*n+1 (n>0, 10, 19, 28, ...), we have, for all terms, Pell's equation X^2 - A*Y^2 = 1. Example: 10^2 - 11*3^2 = 1; 19^2 - 40*3^2 = 1; 28^2 - 87*3^2 = 1. - Vincenzo Librandi, Aug 01 2010

Crossrefs

Cf. A093644 ((9,1) Pascal, column m=1).
Numbers with digital root m: this sequence (m=1), A017185 (m=2), A017197 (m=3), A017209 (m=4), A017221 (m=5), A017233 (m=6), A017245 (m=7), A017257 (m=8), A008591 (m=9).

Programs

Formula

G.f.: (1 + 8*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=10. - Vincenzo Librandi, Aug 01 2010
E.g.f.: exp(x)*(1 + 9*x). - Stefano Spezia, Apr 20 2023
a(n) = A016777(3*n). - Elmo R. Oliveira, Apr 12 2025

A002276 a(n) = 2*(10^n - 1)/9.

Original entry on oeis.org

0, 2, 22, 222, 2222, 22222, 222222, 2222222, 22222222, 222222222, 2222222222, 22222222222, 222222222222, 2222222222222, 22222222222222, 222222222222222, 2222222222222222, 22222222222222222, 222222222222222222, 2222222222222222222, 22222222222222222222, 222222222222222222222
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the total number of holes in a variation of a box fractal as in illustration. - Kival Ngaokrajang, May 23 2014 [As observed by Hans Havermann, this seems to be incorrect: e.g., for n = 2 the illustration shows 28 small holes plus two larger holes. - M. F. Hasler, Oct 05 2020]

Crossrefs

Programs

Formula

a(n) = A178630(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 2*10^(n-1) with a(0) = 0.
a(n) = 11*a(n-1) - 10*a(n-2) with a(0) = 0, a(1) = 2. (End)
G.f.: 2*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 2*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 19 2025: (Start)
a(n) = 2*A002275(n).
a(n) = A010785(A017185(n-1)) for n >= 1. (End)

A017209 a(n) = 9*n + 4.

Original entry on oeis.org

4, 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, 103, 112, 121, 130, 139, 148, 157, 166, 175, 184, 193, 202, 211, 220, 229, 238, 247, 256, 265, 274, 283, 292, 301, 310, 319, 328, 337, 346, 355, 364, 373, 382, 391, 400, 409, 418, 427, 436, 445, 454, 463, 472, 481
Offset: 0

Views

Author

Keywords

Comments

Numbers whose digital root is 4. - L. Edson Jeffery, Nov 26 2016

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D5.

Crossrefs

Programs

Formula

G.f.: (4 + 5*x)/(x - 1)^2. - R. J. Mathar, Jul 14 2016
A010888(a(n)) = 4. - L. Edson Jeffery, Nov 26 2016
E.g.f.: exp(x)*(4 + 9*x). - Stefano Spezia, Dec 25 2022

A247676 Odd composite numbers congruent to 2 modulo 9.

Original entry on oeis.org

65, 119, 155, 209, 245, 299, 335, 371, 407, 425, 497, 515, 533, 551, 605, 623, 695, 713, 731, 749, 767, 785, 803, 875, 893, 965, 1001, 1037, 1055, 1073, 1127, 1145, 1199, 1235, 1253, 1271, 1325, 1343, 1379, 1397, 1415, 1469, 1505, 1541, 1577, 1595, 1631, 1649
Offset: 1

Views

Author

Odimar Fabeny, Sep 22 2014

Keywords

Comments

Subsequence of A017185 (9n+2).
Composites == 11 mod 18. - Robert Israel, Sep 24 2014

Crossrefs

Programs

  • Maple
    remove(isprime,[seq(18*k+11,k=1..1000)]); # Robert Israel, Sep 24 2014
  • Mathematica
    Select[18Range[100] + 11, Not[PrimeQ[#]] &] (* Alonso del Arte, Sep 25 2014 *)
    Select[Range[11,2000,18],CompositeQ] (* Harvey P. Dale, Oct 29 2023 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && ((n % 9) == 2), print1(n, ", ")););} \\ Michel Marcus, Sep 22 2014

A154680 Triangle read by rows where T(m,n)=2*m*n + m + n - 2.

Original entry on oeis.org

2, 5, 10, 8, 15, 22, 11, 20, 29, 38, 14, 25, 36, 47, 58, 17, 30, 43, 56, 69, 82, 20, 35, 50, 65, 80, 95, 110, 23, 40, 57, 74, 91, 108, 125, 142, 26, 45, 64, 83, 102, 121, 140, 159, 178, 29, 50, 71, 92, 113, 134, 155, 176, 197, 218, 32, 55, 78, 101, 124, 147, 170, 193, 216, 239, 262
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

All terms are in A153052.
First column: A016789; second column: 5*A000027; third column: A016993; fourth column: A017185. - Vincenzo Librandi, Nov 18 2012

Examples

			Triangle begins:
2;
5,  10;
8,  15, 22;
11, 20, 29, 38;
14, 25, 36, 47, 58;
17, 30, 43, 56, 69,  82;
20, 35, 50, 65, 80,  95,  110;
23, 40, 57, 74, 91,  108, 125, 142;
26, 45, 64, 83, 102, 121, 140, 159, 178;
29, 50, 71, 92, 113, 134, 155, 176, 197, 218; etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k+n+k-2: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 18 2012
  • Mathematica
    Flatten[Table[Floor[2 n m + m + n - 2], {n, 1, 16}, {m, n}]] (* Vincenzo Librandi, May 14 2012 *)

A163672 Triangle T(n,m) = 2mn + m + n + 7 read by rows.

Original entry on oeis.org

11, 14, 19, 17, 24, 31, 20, 29, 38, 47, 23, 34, 45, 56, 67, 26, 39, 52, 65, 78, 91, 29, 44, 59, 74, 89, 104, 119, 32, 49, 66, 83, 100, 117, 134, 151, 35, 54, 73, 92, 111, 130, 149, 168, 187, 38, 59, 80, 101, 122, 143, 164, 185, 206, 227, 41, 64, 87, 110, 133, 156, 179
Offset: 1

Views

Author

Vincenzo Librandi, Aug 03 2009

Keywords

Comments

2*T(n,n) - 13 = (2n+1)^2.
The numbers 2*T(m,n)-13 =(2*n+1)*(2*m+1) are not prime. Also: first column: A016789; second column: A016897; third column: A017017; fourth column: A017185. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
  11;
  14,  19;
  17,  24,  31;
  20,  29,  38,  47;
  23,  34,  45,  56,  67;
  26,  39,  52,  65,  78,  91;
  29,  44,  59,  74,  89, 104, 119;
  32,  49,  66,  83, 100, 117, 134, 151;
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k + 7: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
    
  • Mathematica
    t[n_,k_]:=2 n*k + n + k + 7; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
  • PARI
    for(n=1,10, for(m=1,n, print1(2*m*n + m + n + 7, ", "))) \\ G. C. Greubel, Aug 02 2017

Formula

T(n,m) = A163674(n,m)-2 = A163657(n,m)-1.

Extensions

Edited by R. J. Mathar, Oct 12 2009

A181418 a(n) = A000984(n)*A000172(n), which is the term-wise product of the Central binomial coefficients and Franel numbers, respectively.

Original entry on oeis.org

1, 4, 60, 1120, 24220, 567504, 14030016, 360222720, 9513014940, 256758913840, 7051260776560, 196403499277440, 5535202897806400, 157551884911456000, 4522682234563776000, 130783762623673221120, 3806221127760278029980
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2011

Keywords

Comments

This sequence is s_6 in Cooper's paper. - Jason Kimberley, Nov 25 2012
Diagonal of the rational function R(x,y,z,w)=1/(1-(w*x*y+w*z+x*y+x*z+y+z)). - Gheorghe Coserea, Jul 13 2016

Examples

			E.g.f.: A(x) = 1 + 4*x/2! + 60*x^2/(2!*4!) + 1120*x^3/(3!*6!) + 24220*x^4/(4!*8!) + 567504*x^5/(5!*10!) +....
where A(x)^(1/2) = 1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 +x^5/5!^3 +...
		

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • Mathematica
    Table[Binomial[2n,n]*Sum[Binomial[n,k]^3,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=binomial(2*n,n)*sum(k=0,n,binomial(n,k)^3)}
    
  • PARI
    {a(n)=(2*n)!*n!*polcoeff(sum(m=0, n, x^m/m!^3+x*O(x^n))^2, n)}

Formula

a(n) = C(2n,n) * Sum_{k=0..n} C(n,k)^3.
E.g.f.: Sum_{n>=0} a(n)*x^n/(n!*(2*n)!) = ( Sum_{n>=0} x^n/n!^3 )^2.
From Jason Kimberley, Nov 26 2012: (Start)
1/Pi
= (2/25)*Sum_{n>=0} a(n)*(9n+2)/50^n. [Cooper, equation (5)]
= (2/25)*Sum_{n>=0} a(n)*A017185(n)/A165800(n). (End)
G.f.: 4*hypergeom([1/6, 1/3],[1],(27/2)*(1+(1-32*x)^(1/2))*(1-(1-32*x)^(1/2))^2/(3+(1-32*x)^(1/2))^3)^2/(3+(1-32*x)^(1/2)). - Mark van Hoeij, May 07 2013
Recurrence: n^3*a(n) = 2*(2*n-1)*(7*n^2 - 7*n + 2)*a(n-1) + 32*(n-1)*(2*n-3)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 2^(5*n+1) / (sqrt(3) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Mar 06 2014
0 = (-x^2+28*x^3+128*x^4)*y''' + (-3*x+126*x^2+768*x^3)*y'' + (-1+92*x+864*x^2)*y' + (4+96*x)*y, where y is g.f. - Gheorghe Coserea, Jul 13 2016

A063289 Dimension of the space of weight n cuspidal newforms for Gamma_1( 16 ).

Original entry on oeis.org

-1, 2, 7, 11, 16, 20, 25, 29, 34, 38, 43, 47, 52, 56, 61, 65, 70, 74, 79, 83, 88, 92, 97, 101, 106, 110, 115, 119, 124, 128, 133, 137, 142, 146, 151, 155, 160, 164, 169, 173, 178, 182, 187, 191, 196, 200, 205, 209, 214, 218, 223, 227, 232, 236
Offset: 2

Views

Author

N. J. A. Sloane, Jul 14 2001

Keywords

Comments

It appears that for n > 2 a(n) = floor((9n-22)/2). - Gary Detlefs, Mar 02 2010

Crossrefs

Cf. A063232, A063233, A017185 (bisection), A130880, A332438.

Programs

  • Mathematica
    Join[{-1}, Table[9*n/2 + (-1)^n/4 - 45/4, {n, 3, 60}]] (* Amiram Eldar, Jan 12 2024 *)

Formula

a(n) = 9*n/2 + (-1)^n/4 - 45/4 for n >= 3, with first differences in A010710. - R. J. Mathar, Dec 06 2010
From M. F. Hasler, Mar 05 2012: (Start)
G.f.: x^2*(-1 + 3*x + 6*x^2 + x^3)/(1 - x - x^2 + x^3).
a(n+2) = a(n)+9 (n>2), a(2n+1) = a(2n)+4 (n>1), a(2n) = a(2n-1)+5 (n>1). (End)
Sum_{n>=3} (-1)^(n+1)/a(n) = cot(2*Pi/9)*Pi/9. - Amiram Eldar, Jan 12 2024
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=3} (1 - (-1)^n/a(n)) = 2*sin(Pi/18) + 1 (= A130880 + 1).
Product_{n>=3} (1 + (-1)^n/a(n)) = (1/2) * sec(Pi/9) (= A332438 - 3). (End)

A139610 a(n) = 45*n + 10.

Original entry on oeis.org

10, 55, 100, 145, 190, 235, 280, 325, 370, 415, 460, 505, 550, 595, 640, 685, 730, 775, 820, 865, 910, 955, 1000, 1045, 1090, 1135, 1180, 1225, 1270, 1315, 1360, 1405, 1450, 1495, 1540, 1585, 1630, 1675, 1720, 1765, 1810, 1855, 1900
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 10th column of positive numbers in the square array of nonnegative and polygonal numbers A139600.

Crossrefs

Programs

Formula

a(n) = A057145(n+2,10).
G.f.: 5*(2+7*x)/(x-1)^2. - R. J. Mathar, Jul 28 2016
From Elmo R. Oliveira, Apr 16 2024: (Start)
E.g.f.: 5*exp(x)*(2 + 9*x).
a(n) = 5*A017185(n) = 5*(A062708(n+1) - A062708(n)).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A157262 a(n) = 36*n^2 - 55*n + 21.

Original entry on oeis.org

2, 55, 180, 377, 646, 987, 1400, 1885, 2442, 3071, 3772, 4545, 5390, 6307, 7296, 8357, 9490, 10695, 11972, 13321, 14742, 16235, 17800, 19437, 21146, 22927, 24780, 26705, 28702, 30771, 32912, 35125, 37410, 39767, 42196, 44697, 47270
Offset: 1

Views

Author

Vincenzo Librandi, Feb 26 2009

Keywords

Comments

The identity (10368*n^2 - 15840*n + 6049)^2 - (36*n^2 - 55*n + 21)*(1728*n - 1320)^2 = 1 can be written as A157264(n)^2 - a(n)*A157263(n)^2 = 1. - Vincenzo Librandi, Jan 27 2012
The continued fraction expansion of sqrt(a(n)) is [6n-5; {2, 2, 2, 12n-10}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 05 2022

Crossrefs

Programs

  • Magma
    I:=[2, 55, 180]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 27 2012
  • Mathematica
    LinearRecurrence[{3,-3,1},{2,55,180},40] (* Vincenzo Librandi, Jan 27 2012 *)
    Table[36*n^2-55*n+21, {n,1,30}] (* G. C. Greubel, Feb 04 2018 *)
  • PARI
    a(n)=36*n^2-55*n+21 \\ Charles R Greathouse IV, Dec 28 2011
    

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 27 2012
G.f.: x*(-2-49*x-21*x^2)/(x-1)^3. - Vincenzo Librandi, Jan 27 2012
a(n) = A016813(n-1)*A017185(n-1). - Bruno Berselli, Jan 27 2012
E.g.f.: (36*x^2 - 19*x + 21)*exp(x) - 21. - G. C. Greubel, Feb 04 2018
Showing 1-10 of 18 results. Next