cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A089911 a(n) = Fibonacci(n) mod 12.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1
Offset: 0

Views

Author

Casey Mongoven, Nov 14 2003

Keywords

Comments

From Reinhard Zumkeller, Jul 05 2013: (Start)
Sequence has been applied by several composers to 12-tone equal temperament pitch structure. The complete Fibonacci mod 12 system (a set of 10 periodic sequences) exhausts all possible ordered dyads; that is, every possible combination of two pitches is found in these sets.
a(A008594(n)) = 0;
a(A227144(n)) = 1;
a(3*A047522(n)) = 2;
a(A017569(n)) = a(2*A016933(n)) = a(4*A016777(n)) = 3;
a(2*A017629(n)) = a(3*A017137(n)) = a(6*A004767(n)) = 4;
a(A227146(n)) = 5;
a(nonexistent) = 6;
a(2*A017581(n)) = 7;
a(2*A017557(n)) = a(4*A016813(n)) = 8;
a(A017617(n)) = a(2*A016957(n)) = a(4*A016789(n)) = 9;
a(3*A047621(n)) = 10;
a(2*A017653(n)) = 11. (End)

Crossrefs

Programs

  • Haskell
    a089911 n = a089911_list !! n
    a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12)
                           (tail a089911_list) a089911_list
    -- Reinhard Zumkeller, Jul 01 2013
    
  • Magma
    [Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
  • Maple
    with(combinat,fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
  • Mathematica
    Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

Has period of 24, restricted period 12 and multiplier 5.
a(n) = (a(n-1) + a(n-2)) mod 12, a(0) = 0, a(1) = 1.

Extensions

More terms from Ray Chandler, Nov 15 2003

A126979 a(n) = 24*n + 233.

Original entry on oeis.org

233, 257, 281, 305, 329, 353, 377, 401, 425, 449, 473, 497, 521, 545, 569, 593, 617, 641, 665, 689, 713, 737, 761, 785, 809, 833, 857, 881, 905, 929, 953, 977, 1001, 1025, 1049, 1073, 1097, 1121, 1145, 1169, 1193, 1217, 1241, 1265, 1289, 1313, 1337, 1361
Offset: 0

Views

Author

Robert H Barbour, Mar 20 2007, Jun 12 2007

Keywords

Comments

Superhighway created by 'LQTL Ant' L45R135L45R135 from iteration 233 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the turn angle in degrees.

References

  • P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, 2000.
  • S. Wolfram, A New Kind of Science, 1st ed. Il.: Wolfram Media Inc., 2002.

Crossrefs

Cf. A031041, A017581, A126978, A126980. Has many terms in common with A031041.

Programs

  • GAP
    a:=[233, 257];; for n in [3..60] do a[n]:=2*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 28 2019
  • Magma
    I:=[233, 257]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // G. C. Greubel, May 28 2019
    
  • Mathematica
    Table[24*n + 233, {n, 0, 60}] (* Stefan Steinerberger, Jun 17 2007 *)
    LinearRecurrence[{2,-1}, {233,257}, 60] (* G. C. Greubel, May 28 2019 *)
  • PARI
    my(x='x+O('x^60)); Vec((233-209*x)/(1-x)^2) \\ G. C. Greubel, May 28 2019
    
  • Sage
    ((233-209*x)/(1-x)^2).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019
    

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: (233 - 209*x)/(1 - x)^2. (End)
E.g.f.: (233 + 24*x)*exp(x). - G. C. Greubel, May 28 2019

Extensions

More terms from Stefan Steinerberger, Jun 17 2007

A351974 a(n) is the first maximum reached by iterating the reduced Collatz function R on 4n-1: a(n) = R^s(4n-1), where R(k) = A139391(k) and s the number of iterations required.

Original entry on oeis.org

5, 17, 17, 53, 29, 53, 41, 161, 53, 89, 65, 161, 77, 125, 89, 485, 101, 161, 113, 269, 125, 197, 137, 485, 149, 233, 161, 377, 173, 269, 185, 1457, 197, 305, 209, 485, 221, 341, 233, 809, 245, 377, 257, 593, 269, 413, 281, 1457, 293, 449, 305, 701, 317, 485
Offset: 1

Views

Author

Ya-Ping Lu, Feb 26 2022

Keywords

Comments

Iterating R on 4n-1 (n>=1) starts with an increasing trajectory before reaching the first maximum. However, iterating R on 4n-3 (n>=1) starts with a decreasing trajectory before reaching 1 or the first minimum.

Examples

			For n = 1, iterating R on 4n-1=3 gives 3->5->1, in which the first maximum is 5, and thus a(0) = 5.
For n = 8, iterating R on 4n-1=31 gives 31->47->71->107->161->121->91->137->103->155->233->175...->23->35->53->5->1, in which the first maximum is 161, and thus a(8) = 161.
		

Crossrefs

Programs

  • PARI
    a(n) = my(s=valuation(n,2)); n>>(s-1)*3^(s+1) - 1; \\ Kevin Ryde, Feb 28 2022
  • Python
    def A351974(n): s = (n&-n).bit_length(); return 4*n*3**s//2**s - 1
    

Formula

a(n) = 4*n*(3/2)^s - 1, where s = A001511(n).
a(n) == 5 (mod 12).
For s >= 1 and m >= 0, a(2^s*m+2^(s-1)) = 2*(3^s)*(2m+1) - 1. For example, a(2m+1) = 12m+5 = A017581(m); a(4m+2) = 36m+17; and a(8m+4) = 108m+53.

A360962 Square array T(n,k) = k*((3+6*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 4, 5, 0, 7, 17, 12, 0, 10, 29, 39, 22, 0, 13, 41, 66, 70, 35, 0, 16, 53, 93, 118, 110, 51, 0, 19, 65, 120, 166, 185, 159, 70, 0, 22, 77, 147, 214, 260, 267, 217, 92, 0, 25, 89, 174, 262, 335, 375, 364, 284, 117, 0, 28, 101, 201, 310, 410, 483, 511, 476, 360, 145
Offset: 0

Views

Author

Paul Curtz, Feb 27 2023

Keywords

Comments

The main diagonal is A024394.
The antidiagonals sums are A000537.

Examples

			The rows are:
  0  1  5  12  22  35  51  70 ... = A000326
  0  4 17  39  70 110 159 217 ... = A022266
  0  7 29  66 118 185 267 364 ... = A022272
  0 10 41  93 166 260 375 511 ... = A022278
  0 13 53 120 214 335 483 658 ... = A022284
  ... .
Columns: A000004, A016777, A017581, A154266=3*A017209, 2*A348845, 5*A161447, 3*A158057(n+1), ... (coefficients from A026741).
Difference between two consecutive rows are: A033428.
This square array read by antidiagonals leads to the triangle
  0
  0  1
  0  4  5
  0  7 17 12
  0 10 29 39  22
  0 13 41 66  70  35
  0 16 53 93 118 110 51
  ... .
		

Crossrefs

Programs

  • Maple
    T:= (n,k)-> k*(k*(3+6*n)-1)/2:
    seq(seq(T(d-k,k), k=0..d), d=0..10);  # Alois P. Heinz, Feb 28 2023
  • Mathematica
    T[n_, k_] := ((6*n + 3)*k - 1)*k/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 27 2023 *)
  • PARI
    T(n,k) = k*((3+6*n)*k-1)/2; \\ Michel Marcus, Feb 27 2023

Formula

Take successively sequences n*(3*n-1)/2, n*(9*n-1)/2, n*(15*n-1)/2, n*(21*n-1)/2, ... listed in the EXAMPLE section.
From Stefano Spezia, Feb 21 2024: (Start)
G.f.: y*(1 + 2*y + x*(2 + y))/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + 3*y + 6*x*(1 + y))/2. (End)

A017582 a(n) = (12n + 5)^2.

Original entry on oeis.org

25, 289, 841, 1681, 2809, 4225, 5929, 7921, 10201, 12769, 15625, 18769, 22201, 25921, 29929, 34225, 38809, 43681, 48841, 54289, 60025, 66049, 72361, 78961, 85849, 93025, 100489, 108241, 116281
Offset: 0

Views

Author

Keywords

Programs

Formula

a(n) = A017581(n)^2. - Michel Marcus, Dec 28 2014
G.f.: (25 + 214*x + 49*x^2)/(1-x)^3. - Vincenzo Librandi, Dec 28 2014

A017590 a(n) = (12*n+5)^10.

Original entry on oeis.org

9765625, 2015993900449, 420707233300201, 13422659310152401, 174887470365513049, 1346274334462890625, 7326680472586200649, 31181719929966183601, 110462212541120451001, 339456738992222314849
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

A110598 Balanced numbers k such that k mod 12 = 5.

Original entry on oeis.org

137885, 145145, 3501605, 6605945, 6953765, 8409305, 10055045, 11413205, 11569805, 16540205, 18545285, 19648805, 21902705, 22806905, 25965005, 26655005, 29811665, 45680921, 71569745, 79989845, 91681289, 196492205, 214218389, 223086125, 229554941, 233601641
Offset: 1

Views

Author

Walter Kehowski, Sep 13 2005

Keywords

Comments

For the first 26 terms, the quotient sigma(k)/phi(k) is 2 or 3.

Crossrefs

Intersection of A017581 and A020492.

Programs

  • Maple
    with(numtheory); BNM5:=[]: for z from 1 to 1 do for m from 1 to 1000000 do n:=12*m+5; if sigma(n) mod phi(n) = 0 then BNM5:=[op(BNM5),n] fi; od; od; BNM5;
  • Mathematica
    Select[Range[5,12000000,12],MemberQ[{2,3},DivisorSigma[1,#]/EulerPhi[#]]&]  (* Harvey P. Dale, May 06 2012 *)

Extensions

a(10)-a(26) from Donovan Johnson, Aug 30 2012

A160080 Lodumo_4 of Fibonacci numbers.

Original entry on oeis.org

0, 1, 5, 2, 3, 9, 4, 13, 17, 6, 7, 21, 8, 25, 29, 10, 11, 33, 12, 37, 41, 14, 15, 45, 16, 49, 53, 18, 19, 57, 20, 61, 65, 22, 23, 69, 24, 73, 77, 26, 27, 81, 28, 85, 89, 30, 31, 93, 32, 97, 101, 34, 35, 105, 36, 109, 113, 38, 39, 117, 40, 121, 125, 42, 43, 129, 44, 133, 137, 46
Offset: 0

Views

Author

Philippe Deléham, May 01 2009

Keywords

Comments

Permutation of nonnegative numbers.

Crossrefs

Formula

a(n) = lod_4(A000045(n)).
From Philippe Deléham, Nov 30 2023: (Start)
a(n) = 2*a(n-6) - a(n-12) for n >= 12.
a(6*n) = 4*n, a(6*n+1) = 12*n+1, a(6*n+2) = 12*n+5, a(6*n+3) = 4*n+2, a(6*n+4) = 4*n+3, a(6*n+5) = 12*n+9.
G.f.: (x + 5*x^2 + 2*x^3 + 3*x^4 + 9*x^5 + 4*x^6 + 11*x^7 + 7*x^8 + 2*x^9 + x^10 + 3*x^11) / ((1-x)^2*(1+x+x^2)^2*(1+x^3)^2). (End)

A361226 Square array T(n,k) = k*((1+2*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 2, 5, 3, 0, 3, 9, 12, 6, 0, 4, 13, 21, 22, 10, 0, 5, 17, 30, 38, 35, 15, 0, 6, 21, 39, 54, 60, 51, 21, 0, 7, 25, 48, 70, 85, 87, 70, 28, 0, 8, 29, 57, 86, 110, 123, 119, 92, 36, 0, 9, 33, 66, 102, 135, 159, 168, 156, 117, 45
Offset: 0

Views

Author

Paul Curtz, Mar 05 2023

Keywords

Comments

The main diagonal is A002414.
The first upper diagonal is A160378(n+1).
The antidiagonals sums are A034827(n+2).
b(n) = (A034827(n+3) = 0, 2, 10, 30, 70, ...) - (A002414(n) = 0, 1, 9, 30, 70, ...) = 0, 1, 1, 0, 0, 5, 21, 56, ... .
b(n+2) = A299120(n). b(n+4) = A033275(n). b(n+4) - b(n) = A002492(n).

Examples

			The rows are
  0, 0,  1,  3,  6,  10,  15,  21, ...   = A161680
  0, 1,  5, 12, 22,  35,  51,  70, ...   = A000326
  0, 2,  9, 21, 38,  60,  87, 119, ...   = A005476
  0, 3, 13, 30, 54,  85, 123, 168, ...   = A022264
  0, 4, 17, 39, 70, 110, 159, 217, ...   = A022266
  ... .
Columns: A000004, A001477, A016813, A017197=3*A016777, 2*A017101, 5*A016873, 3*A017581, 7*A017017, ... (coefficients from A026741).
Difference between two consecutive rows: A000290. Hence A143844.
This square array read by antidiagonals leads to the triangle
  0
  0   0
  0   1   1
  0   2   5   3
  0   3   9  12   6
  0   4  13  21  22  10
  0   5  17  30  38  35  15
  ... .
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := k*((2*n + 1)*k - 1)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 05 2023 *)
  • PARI
    a(n) = { my(row = (sqrtint(8*n+1)-1)\2, column = n - binomial(row + 1, 2)); binomial(column, 2) + column^2 * (row - column) } \\ David A. Corneth, Mar 05 2023
    
  • Python
    # Seen as a triangle:
    from functools import cache
    @cache
    def Trow(n: int) -> list[int]:
        if n == 0: return [0]
        r = Trow(n - 1)
        return [r[k] + k * k if k < n else r[n - 1] + n - 1 for k in range(n + 1)]
    for n in range(7): print(Trow(n)) # Peter Luschny, Mar 05 2023

Formula

Take successively sequences n*(n-1)/2, n*(3*n-1)/2, n*(5*n-1)/2, ... listed in the EXAMPLE section.
G.f.: y*(x + y)/((1 - y)^3*(1 - x)^2). - Stefano Spezia, Mar 06 2023
E.g.f.: exp(x+y)*y*(2*x + y + 2*x*y)/2. - Stefano Spezia, Feb 21 2024

A367705 Coefficients of expansion of (1 + 5*x + 11*x^2 + 5*x^3 + 7*x^4 + x^5)/(1 - x^3)^2 in powers of x.

Original entry on oeis.org

1, 5, 11, 7, 17, 23, 13, 29, 35, 19, 41, 47, 25, 53, 59, 31, 65, 71, 37, 77, 83, 43, 89, 95, 49, 101, 107, 55, 113, 119, 61, 125, 131, 67, 137, 143, 73, 149, 155, 79, 161, 167, 85, 173, 179, 91, 185, 191, 97, 197, 203, 103, 209, 215, 109, 221, 227, 115, 233, 239
Offset: 0

Views

Author

Philippe Deléham, Nov 27 2023

Keywords

Comments

Based on an idea of Pierre CAMI.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 5*x + 11*x^2 + 5*x^3 + 7*x^4 + x^5)/(1 - x^3)^2, {x, 0, 60}], x] (* or *)
    LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 5, 11, 7, 17, 23}, 60] (* Amiram Eldar, Nov 28 2023 *)

Formula

a(n) = 3*A006369(n) + A130196(n).
a(n) = A007310(A006369(n) + 1).
a(n) = 2*a(n-3) - a(n-6) for n >= 6.
a(3*n) = 6*n+1, a(3*n+1) = 12*n+5, a(3*n+2) = 12*n+11.
Sum_{n>=0} (-1)^n/a(n) = ((2+sqrt(2))*Pi + sqrt(3)*log(7+4*sqrt(3)) + sqrt(6)*log(5-2*sqrt(6)))/12. - Amiram Eldar, Nov 28 2023
Showing 1-10 of 10 results.