A385776
Primes having only {1, 2, 9} as digits.
Original entry on oeis.org
2, 11, 19, 29, 191, 199, 211, 229, 911, 919, 929, 991, 1129, 1229, 1291, 1999, 2111, 2129, 2221, 2999, 9199, 9221, 9929, 11119, 11299, 12119, 12211, 12911, 12919, 19121, 19211, 19219, 19919, 19991, 21121, 21191, 21211, 21221, 21911, 21929, 21991
Offset: 1
-
[p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 9]];
-
Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 9}, n], PrimeQ], {n, 7}]]
-
primes_with(n=50, show=0, L=[1, 2, 9])={for(d=1, 1e9, my(t, u=vector(d, i, 10^(d-i))~); forvec(v=vector(d, i, [1+!(L[1]||(i>1&&i
-
from gmpy2 import is_prime
from itertools import count, islice, product
def primes_with(digits): # generator of primes having only set(digits) as digits
S, E = "".join(sorted(set(digits) - {'0'})), "".join(sorted(set(digits) & set("1379")))
yield from (p for p in [2, 3, 5, 7] if str(p) in digits)
yield from (t for d in count(2) for s in S for m in product(digits, repeat=d-2) for e in E if is_prime(t:=int(s+"".join(m)+e)))
print(list(islice(primes_with("129"), 41))) # Michael S. Branicky, Jul 11 2025
A007931
Numbers that contain only 1's and 2's. Nonempty binary strings of length n in lexicographic order.
Original entry on oeis.org
1, 2, 11, 12, 21, 22, 111, 112, 121, 122, 211, 212, 221, 222, 1111, 1112, 1121, 1122, 1211, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2212, 2221, 2222, 11111, 11112, 11121, 11122, 11211, 11212, 11221, 11222, 12111, 12112, 12121, 12122
Offset: 1
Positive numbers may not start with 0 in the OEIS, otherwise this sequence would have been written as: 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001, 01010, 01011, ...
From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(10) = 122.
a(100) = 211212.
a(10^3) = 222212112.
a(10^4) = 1122211121112.
a(10^5) = 2111122121211112.
a(10^6) = 2221211112112111112.
a(10^7) = 11221112112122121111112.
a(10^8) = 12222212122221111211111112.
a(10^9) = 22122211221212211212111111112. (End)
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 2. - From N. J. A. Sloane, Jul 26 2012
- K. Atanassov, On the 97th, 98th and the 99th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 89-93.
- R. M. Smullyan, Theory of Formal Systems, Princeton, 1961.
- John Stillwell, Reverse Mathematics, Princeton, 2018. See p. 90.
- Hieronymus Fischer, Table of n, a(n) for n = 1..10000 (terms up to 2^10-2 from T. D. Noe, corrected by Sean A. Irvine, April 18 2019)
- K. Atanassov, On Some of Smarandache's Problems, American Research Press, 1999, 16-21.
- EMIS, Mirror site for Southwest Journal of Pure and Applied Mathematics
- R. R. Forslund, A logical alternative to the existing positional number system, Southwest Journal of Pure and Applied Mathematics, Vol. 1, 1995.
- R. R. Forslund, Positive Integer Pages
- James E. Foster, A Number System without a Zero-Symbol, Mathematics Magazine, Vol. 21, No. 1. (1947), pp. 39-41.
- F. Smarandache, Only Problems, Not Solutions!.
- Index entries for 10-automatic sequences.
Cf.
A007932 (digits 1-3),
A059893,
A045670,
A052382 (digits 1-9),
A059939,
A059941,
A059943,
A032924,
A084544,
A084545,
A046034 (prime digits 2,3,5,7),
A089581,
A084984 (no prime digits);
A001742,
A001743,
A001744: loops;
A202267 (digits 0, 1 and primes),
A202268 (digits 1,4,6,8,9),
A014261 (odd digits),
A014263 (even digits).
-
a007931 n = f (n + 1) where
f x = if x < 2 then 0 else (10 * f x') + m + 1
where (x', m) = divMod x 2
-- Reinhard Zumkeller, Oct 26 2012
-
[n: n in [1..100000] | Set(Intseq(n)) subset {1,2}]; // Vincenzo Librandi, Aug 19 2016
-
# Maple program to produce the sequence:
a:= proc(n) local m, r, d; m, r:= n, 0;
while m>0 do d:= irem(m, 2, 'm');
if d=0 then d:=2; m:= m-1 fi;
r:= d, r
od; parse(cat(r))/10
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 26 2016
# Maple program to invert this sequence: given a(n), it returns n. - N. J. A. Sloane, Jul 09 2012
invert7931:=proc(u)
local t1,t2,i;
t1:=convert(u,base,10);
[seq(t1[i]-1,i=1..nops(t1))];
[op(%),1];
t2:=convert(%,base,2,10);
add(t2[i]*10^(i-1),i=1..nops(t2))-1;
end;
-
f[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[f, 42] (* Robert G. Wilson v Sep 14 2006 *)
(* Next, A007931 using (0,1) instead of (1,2) *)
d[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[FromCharacterCode[ToCharacterCode[ToString[d[#]]] - 1] &, 100] (* Peter J. C. Moses, at request of Clark Kimberling, Feb 09 2012 *)
Flatten[Table[FromDigits/@Tuples[{1,2},n],{n,5}]] (* Harvey P. Dale, Sep 13 2014 *)
-
apply( {A007931(n)=fromdigits([d+1|d<-binary(n+1)[^1]])}, [1..44]) \\ M. F. Hasler, Nov 03 2020, replacing older code from Mar 26 2015
-
/* inverse function */ apply( {A007931_inv(N)=fromdigits([d-1|d<-digits(N)],2)+2<M. F. Hasler, Nov 09 2020
-
def a(n): return int(bin(n+1)[3:].replace('1', '2').replace('0', '1'))
print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 13 2021
-
def A007931(n): return int(s:=bin(n+1)[3:])+(10**(len(s))-1)//9 # Chai Wah Wu, Jun 13 2025
A036302
Composite numbers k such that the digits of the prime factors of k are either 1 or 2.
Original entry on oeis.org
4, 8, 16, 22, 32, 44, 64, 88, 121, 128, 176, 242, 256, 352, 422, 484, 512, 704, 844, 968, 1024, 1331, 1408, 1688, 1936, 2048, 2321, 2662, 2816, 3376, 3872, 4096, 4222, 4442, 4642, 5324, 5632, 6752, 7744, 8192, 8444, 8884, 9284, 10648, 11264, 13504, 14641, 15488, 16384
Offset: 1
422 = 2 * 211 is in the sequence as the digits of its prime factors 2 and 211 are either 1 or 2. - _David A. Corneth_, Sep 26 2020
-
[k:k in [2..15000]| not IsPrime(k) and forall{a: a in PrimeDivisors(k)|Intseq(a) subset {1,2}}]; // Marius A. Burtea, Oct 08 2019
-
Select[Range[2,14650],!PrimeQ[#] && Complement[Flatten[IntegerDigits[First/@FactorInteger[#]]],{1,2}]=={} &] (* Jayanta Basu, May 25 2013 *)
A036953
Primes having only {0, 1, 2} as digits.
Original entry on oeis.org
2, 11, 101, 211, 1021, 1201, 2011, 2111, 2221, 10111, 10211, 12011, 12101, 12211, 20011, 20021, 20101, 20201, 21001, 21011, 21101, 21121, 21211, 21221, 22111, 101021, 101111, 101221, 102001, 102101, 102121, 110221, 111121, 111211, 112111
Offset: 1
-
Select[FromDigits/@Tuples[{0,1,2},6],PrimeQ] (* Harvey P. Dale, Jul 11 2017 *)
-
lista(n) = {forprime(p=2, n, if (vecmax(digits(p)) <= 2, print1(p, ", ")))} \\ Michel Marcus, Aug 02 2014
-
A036953={(n,show=0)->for(d=1,1e9,my(u=vector(d,i,10^(d-i))~);forvec(v=vector(d,i,if(i>1,if(iM. F. Hasler, Jul 25 2015
-
from gmpy2 import digits
from sympy import isprime
[int(digits(n,3)) for n in range(1000) if isprime(int(digits(n,3)))] # Chai Wah Wu, Jul 31 2014
A260267
Primes having only {1, 2, 4} as digits.
Original entry on oeis.org
2, 11, 41, 211, 241, 421, 2111, 2141, 2221, 2411, 2441, 4111, 4211, 4241, 4421, 4441, 11411, 12211, 12241, 12421, 14221, 14411, 21121, 21211, 21221, 22111, 22441, 24121, 24421, 41141, 41221, 41411, 42221, 44111, 44221, 111121, 111211, 112111, 112121, 112241
Offset: 1
Cf. similar sequences listed in
A260266.
-
[p: p in PrimesUpTo(4*10^5) | Set(Intseq(p)) subset [1, 4, 2]];
-
Select[Prime[Range[3 10^4]], Complement[IntegerDigits[#], {1, 4, 2}]=={} &]
-
A260267(n=50,show=0)={for(d=1,1e9,my(t,u=vector(d,i,10^(d-i))~);forvec(v=vector(d,i,[0,if(iM. F. Hasler, Jul 25 2015
A260266
Primes having only {0, 1, 4} as digits.
Original entry on oeis.org
11, 41, 101, 401, 4001, 4111, 4441, 10111, 10141, 11411, 14011, 14401, 14411, 40111, 41011, 41141, 41411, 44041, 44101, 44111, 100411, 101111, 101141, 101411, 110441, 114001, 114041, 140111, 140401, 140411, 141041, 141101, 400441, 401101, 401411, 404011
Offset: 1
-
[p: p in PrimesUpTo(5*10^5) | Set(Intseq(p)) subset [1, 4, 0]];
-
Select[Prime[Range[4 10^4]], Complement[IntegerDigits[#], {1, 4, 0}]=={} &]
-
A260266(n=50,show=0)={for(d=1,1e9,my(t,u=vector(d,i,10^(d-i))~);forvec(v=vector(d,i,[i==1||i==d,1+(iM. F. Hasler, Jul 25 2015
A260889
Primes having only {1, 2, 7} as digits.
Original entry on oeis.org
2, 7, 11, 17, 71, 127, 211, 227, 271, 277, 727, 1117, 1171, 1217, 1277, 1721, 1777, 2111, 2221, 2711, 2777, 7121, 7127, 7177, 7211, 7717, 7727, 11117, 11171, 11177, 11717, 11777, 12211, 12227, 12277, 12721, 17117, 21121, 21211, 21221, 21227, 21277, 21727
Offset: 1
-
[p: p in PrimesUpTo(3*10^4) | Set(Intseq(p)) subset [1, 2, 7]];
-
Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {1, 2, 7}] == {} &]
Table[Select[FromDigits/@Tuples[{1,2,7},n],PrimeQ],{n,5}]//Flatten (* Harvey P. Dale, Apr 12 2018 *)
A385774
Primes having only {1, 2, 6} as digits.
Original entry on oeis.org
2, 11, 61, 211, 661, 1621, 2111, 2161, 2221, 2621, 6121, 6211, 6221, 6661, 11161, 11261, 11621, 12161, 12211, 12611, 16111, 16661, 21121, 21211, 21221, 21611, 21661, 22111, 22621, 26111, 26161, 26261, 61121, 61211, 61261, 66161, 66221, 111121, 111211
Offset: 1
-
[p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 6]];
-
Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 6}, n], PrimeQ], {n, 7}]]
-
primes_with(, 1, [1, 2, 6]) \\ uses function in A385776
-
print(list(islice(primes_with("126"), 41))) # uses function/imports in A385776
A385775
Primes having only {1, 2, 8} as digits.
Original entry on oeis.org
2, 11, 181, 211, 281, 811, 821, 881, 1181, 1811, 2111, 2221, 2281, 8111, 8221, 8821, 11821, 12211, 12281, 12821, 18121, 18181, 18211, 21121, 21211, 21221, 21821, 21881, 22111, 22811, 28111, 28181, 28211, 81181, 81281, 82811, 88211, 88811, 111121
Offset: 1
-
[p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 8]];
-
Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 8}, n], PrimeQ], {n, 7}]]
-
primes_with(, 1, [1, 2, 8]) \\ uses function in A385776
-
print(list(islice(primes_with("128"), 41))) # uses function/imports in A385776
A111488
Primes having only {0, 1, 3, 6} as digits.
Original entry on oeis.org
3, 11, 13, 31, 61, 101, 103, 113, 131, 163, 311, 313, 331, 601, 613, 631, 661, 1013, 1031, 1033, 1061, 1063, 1103, 1163, 1301, 1303, 1361, 1601, 1613, 1663, 3001, 3011, 3061, 3163, 3301, 3313, 3331, 3361, 3613, 3631, 6011, 6101, 6113, 6131, 6133, 6163
Offset: 1
-
f:= proc(x) local L,p;
L:= subs([3=6,2=3],convert(x,base,4));
p:= add(L[i]*10^(i-1),i=1..nops(L));
if isprime(p) then p fi
end proc:
map(f, [$1..4^4]); # Robert Israel, Dec 18 2018
-
Select[Prime@ Range@ 1000, SubsetQ[{0, 1, 3, 6}, IntegerDigits@ #] &] (* Michael De Vlieger, Jul 25 2015 *)
-
A111488={(n, show=0, L=[0,1,3,6])->my(t); for(d=1,1e9,u=vector(d, i, 10^(d-i))~; forvec(v=vector(d,i,[1+(i==1&&!L[1]), #L]), ispseudoprime(t=vector(d, i, L[v[i]])*u)||next; show&print1(t", "); n--||return(t)))} \\ M. F. Hasler, Jul 25 2015
Showing 1-10 of 13 results.
Comments