A050267
Primes or negative values of primes in the sequence b(n) = 47*n^2 - 1701*n + 10181, n >= 0.
Original entry on oeis.org
10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, -419, -1321, -2129, -2843, -3463, -3989, -4421, -4759, -5003, -5153, -5209, -5171, -5039, -4813, -4493, -4079, -3571, -2969, -2273, -1483, -599, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004 (ISBN 0-387-20860-7); see Section A17, p. 59.
- Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004. See p. 147.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- G. W. Fung and H. C. Williams, Quadratic polynomials which have a high density of prime values, Math. Comput. 55(191) (1990), 345-353.
- Carlos Rivera, Problem 12: Prime producing polynomials, The Prime Puzzles & Problems Connection.
- Jitender Singh, Prime numbers and factorization of polynomials, arXiv:2411.18366 [math.NT], 2024.
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
Cf.
A002383,
A005471,
A005846,
A007635,
A022464,
A027753,
A027755,
A027758,
A048059,
A050267,
A050268,
A116206,
A117081,
A267252.
-
lst={};Do[p=47*n^2-1701*n+10181;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 29 2009 *)
Select[Table[47n^2-1701n+10181,{n,0,50}],PrimeQ] (* Harvey P. Dale, Oct 03 2011 *)
-
[n | n <- apply(m->47*m^2-1701*m+10181, [0..100]), isprime(abs(n))] \\ Charles R Greathouse IV, Jun 18 2017
A027718
Numbers k such that k^2+k+5 is a palindrome.
Original entry on oeis.org
0, 1, 2, 8, 12, 26, 74, 127, 224, 230, 2751, 3462, 4012, 4067, 12752, 22424, 27548, 28168, 105322, 107422, 2358150, 2724718, 2775383, 4063892, 7569245, 85125933, 87579753, 106617617, 2237334999, 2426472519, 2765569146, 2781875716, 2815069131, 4029203527
Offset: 1
-
palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 5; Select[Range[0, 10^5], palQ@ f@ # &] (* Giovanni Resta, Aug 29 2018 *)
A027728
Palindromes of form k^2 + k + 5.
Original entry on oeis.org
5, 7, 11, 77, 161, 707, 5555, 16261, 50405, 53135, 7570757, 11988911, 16100161, 16544561, 162626261, 502858205, 758919857, 793464397, 11092829011, 11539593511, 5560873780655, 7424090904247, 7702753572077, 16515222251561, 57293477439275, 7246424554246427
Offset: 1
-
palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 5; Select[f@ Range[0, 10^5], palQ] (* Giovanni Resta, Aug 29 2018 *)
Select[Table[k^2+k+5,{k,0,852*10^5}],PalindromeQ] (* Harvey P. Dale, Aug 04 2025 *)
A027754
Numbers k such that k^2 + k + 5 is prime.
Original entry on oeis.org
0, 1, 2, 3, 6, 7, 11, 16, 17, 18, 21, 23, 27, 31, 32, 38, 42, 48, 51, 62, 67, 72, 73, 76, 77, 83, 86, 91, 93, 97, 108, 111, 116, 121, 126, 133, 136, 137, 146, 153, 158, 163, 172, 177, 182, 188, 191, 192, 193, 202, 212, 213, 216, 223, 226, 231, 247, 248
Offset: 1
Since 3^2 + 3 + 5 = 17, which is prime, 3 is in the sequence.
Since 4^2 + 4 + 5 = 25 = 5^2, 4 is not in the sequence.
A302445
Triangle read by rows: row n gives primes of form k^2 + n - k for 0 < k < n.
Original entry on oeis.org
2, 3, 5, 5, 7, 11, 17, 7, 13, 19, 37, 11, 29, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 13, 19, 43, 103, 17, 71, 197, 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 19, 31, 61, 109, 151, 229, 23, 41, 131, 293, 401, 23, 29, 43, 53, 79, 113, 179, 233, 263, 443
Offset: 2
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
---+-----------------------------------------------------------------------
2| 2;
3| 3, 5;
4|
5| 5, 7, 11, 17;
6|
7| 7, , 13, 19, , 37;
8|
9| , 11, , , 29, , , ;
10|
11| 11, 13, 17, 23, 31, 41, 53, 67, 83, 101;
12|
13| 13, , 19, , , 43, , , , 103, , ;
14|
15| , 17, , , , , , 71, , , , , , 197;
16|
17| 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
-
a:=Filtered(Flat(List([1..10],n->List([1..n],k->k^2+n-k))),IsPrime); # Muniru A Asiru, Apr 09 2018
-
Map[Union@ Select[#, PrimeQ] &, Table[k^2 + n - k, {n, 23}, {k, 0, n}]] // Flatten (* Michael De Vlieger, Apr 10 2018 *)
A128878
Primes of the form 47*n^2 - 1701*n + 10181.
Original entry on oeis.org
10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387, 34057, 36821, 39679, 45677, 48817, 52051, 65927, 81307, 89561, 102647, 107197, 116579, 126337, 131357
Offset: 1
Douglas Winston (douglas.winston(AT)srupc.com), Apr 17 2007
47k^2 - 1701k + 10181 = 21647 for k = 42.
- R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, ISBN 0-387-20860-7, Section A17, page 59.
Cf.
A050267,
A002383,
A027753,
A027755,
A005471,
A027758,
A048059,
A007635,
A005846,
A116206,
A050268,
A022464.
-
Select[Table[47*n^2 - 1701*n + 10181, {n, 0, 100}], # > 0 && PrimeQ[#] &] (* T. D. Noe, Aug 02 2011 *)
A268101
Smallest prime p such that some polynomial of the form a*x^2 - b*x + p generates distinct primes in absolute value for x = 1 to n, where 0 < a < p and 0 <= b < p.
Original entry on oeis.org
2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 31, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 647, 1277, 1979, 2753
Offset: 1
a(1) = 2 (a prime), x^2 + 2 gives a prime for x = 1.
a(2) = 3 (a prime), 2*x^2 + 3 gives distinct primes for x = 1 to 2.
a(4) = 5 (a prime), 2*x^2 + 5 gives distinct primes for x = 1 to 4.
a(6) = 7 (a prime), 4*x^2 + 7 gives distinct primes for x = 1 to 6.
a(10) = 11 (a prime), 2*x^2 + 11 gives distinct primes for x = 1 to 10.
a(12) = 13 (a prime), 6*x^2 + 13 gives distinct primes for x = 1 to 12.
a(16) = 17 (a prime), 6*x^2 + 17 gives distinct primes for x = 1 to 16.
a(18) = 19 (a prime), 10*x^2 + 19 gives distinct primes for x = 1 to 18.
a(22) = 23 (a prime), 3*x^2 - 3*x + 23 gives distinct primes for x = 1 to 22.
a(28) = 29 (a prime), 2*x^2 + 29 gives distinct primes for x = 1 to 28.
a(29) = 31 (a prime), 2*x^2 - 4*x + 31 gives distinct primes for x = 1 to 29.
a(40) = 41 (a prime), x^2 - x + 41 gives distinct primes for x = 1 to 40.
a(41) = 647 (a prime), abs(36*x^2 - 594*x + 647) gives distinct primes for x = 1 to 41.
a(42) = 1277 (a prime), abs(36*x^2 - 666*x + 1277) gives distinct primes for x = 1 to 42.
a(43) = 1979 (a prime), abs(36*x^2 - 738*x + 1979) gives distinct primes for x = 1 to 43.
a(44) = 2753 (a prime), abs(36*x^2 - 810*x + 2753) gives distinct primes for x = 1 to 44.
Cf.
A027688,
A027753,
A027690,
A027755,
A048058,
A048059,
A007635,
A007639,
A007637,
A007641,
A202018,
A005846,
A117081,
A050268,
A268109.
Showing 1-7 of 7 results.
Comments