cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A050376 "Fermi-Dirac primes": numbers of the form p^(2^k) where p is prime and k >= 0.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

Every number n is a product of a unique subset of these numbers. This is sometimes called the Fermi-Dirac factorization of n (see A182979). Proof: In the prime factorization n = Product_{j>=1} p(j)^e(j) expand every exponent e(j) as binary number and pick the terms of this sequence corresponding to the positions of the ones in binary (it is clear that both n and n^2 have the same number of factors in this sequence, and that each factor appears with exponent 1 or 0).
Or, a(1) = 2; for n>1, a(n) = smallest number which cannot be obtained as the product of previous terms. This is evident from the unique factorization theorem and the fact that every number can be expressed as the sum of powers of 2. - Amarnath Murthy, Jan 09 2002
Except for the first term, same as A084400. - David Wasserman, Dec 22 2004
The least number having 2^n divisors (=A037992(n)) is the product of the first n terms of this sequence according to Ramanujan.
According to the Bose-Einstein distribution of particles, an unlimited number of particles may occupy the same state. On the other hand, according to the Fermi-Dirac distribution, no two particles can occupy the same state (by the Pauli exclusion principle). Unique factorizations of the positive integers by primes (A000040) and over terms of A050376 one can compare with two these distributions in physics of particles. In the correspondence with this, the factorizations over primes one can call "Bose-Einstein factorizations", while the factorizations over distinct terms of A050376 one can call "Fermi-Dirac factorizations". - Vladimir Shevelev, Apr 16 2010
The numbers of the form p^(2^k), where p is prime and k >= 0, might thus be called the "Fermi-Dirac primes", while the classic primes might be called the "Bose-Einstein primes". - Daniel Forgues, Feb 11 2011
In the theory of infinitary divisors, the most natural name of the terms is "infinitary primes" or "i-primes". Indeed, n is in the sequence, if and only if it has only two infinitary divisors. Since 1 and n are always infinitary divisors of n>1, an i-prime has no other infinitary divisors. - Vladimir Shevelev, Feb 28 2011
{a(n)} is the minimal set including all primes and closed with respect to squaring. In connection with this, note that n and n^2 have the same number of factors in their Fermi-Dirac representations. - Vladimir Shevelev, Mar 16 2012
In connection with this sequence, call an integer compact if the factors in its Fermi-Dirac factorization are pairwise coprime. The density of such integers equals (6/Pi^2)*Product_{prime p} (1+(Sum_{i>=1} p^(-(2^i-1))/(p+1))) = 0.872497... It is interesting that there exist only 7 compact factorials listed in A169661. - Vladimir Shevelev, Mar 17 2012
The first k terms of the sequence solve the following optimization problem:
Let x_1, x_2,..., x_k be integers with the restrictions: 2<=x_1A064547(Product{i=1..k} x_i) >= k. Let the goal function be Product_{i=1..k} x_i. Then the minimal value of the goal function is Product_{i=1..k} a(i). - Vladimir Shevelev, Apr 01 2012
From Joerg Arndt, Mar 11 2013: (Start)
Similarly to the first comment, for the sequence "Numbers of the form p^(3^k) or p^(2*3^k) where p is prime and k >= 0" one obtains a factorization into distinct factors by using the ternary expansion of the exponents (here n and n^3 have the same number of such factors).
The generalization to base r would use "Numbers of the form p^(r^k), p^(2*r^k), p^(3*r^k), ..., p^((r-1)*r^k) where p is prime and k >= 0" (here n and n^r have the same number of (distinct) factors). (End)
The first appearance of this sequence as a multiplicative basis in number theory with some new notions, formulas and theorems may have been in my 1981 paper (see the Abramovich reference). - Vladimir Shevelev, Apr 27 2014
Numbers n for which A064547(n) = 1. - Antti Karttunen, Feb 10 2016
Lexicographically earliest sequence of distinct nonnegative integers such that no term is a product of 2 or more distinct terms. Removing the distinctness requirement, the sequence becomes A000040 (the prime numbers); and the equivalent sequence where the product is of 2 distinct terms is A026416 (without its initial term, 1). - Peter Munn, Mar 05 2019
The sequence was independently developed as a multiplicative number system in 1985-1986 (and first published in 1995, see the Uhlmann reference) using a proof method involving representations of positive integers as sums of powers of 2. This approach offers an arguably simpler and more flexible means for analyzing the sequence. - Jeffrey K. Uhlmann, Nov 09 2022

Examples

			Prime powers which are not terms of this sequence:
  8 = 2^3 = 2^(1+2), 27 = 3^3 = 3^(1+2), 32 = 2^5 = 2^(1+4),
  64 = 2^6 = 2^(2+4), 125 = 5^3 = 5^(1+2), 128 = 2^7 = 2^(1+2+4)
"Fermi-Dirac factorizations":
  6 = 2*3, 8 = 2*4, 24 = 2*3*4, 27 = 3*9, 32 = 2*16, 64 = 4*16,
  108 = 3*4*9, 120 = 2*3*4*5, 121 = 121, 125 = 5*25, 128 = 2*4*16.
		

References

  • V. S. Abramovich, On an analog of the Euler function, Proceeding of the North-Caucasus Center of the Academy of Sciences of the USSR (Rostov na Donu) (1981) No. 2, 13-17 (Russian; MR0632989(83a:10003)).
  • S. Ramanujan, Highly Composite Numbers, Collected Papers of Srinivasa Ramanujan, p. 125, Ed. G. H. Hardy et al., AMS Chelsea 2000.
  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian; MR 2000f: 11097, pp. 3912-3913).
  • J. K. Uhlmann, Dynamic map building and localization: new theoretical foundations, Doctoral Dissertation, University of Oxford, Appendix 16, 1995.

Crossrefs

Cf. A000040 (primes, is a subsequence), A026416, A026477, A037992 (partial products), A050377-A050380, A052330, A064547, A066724, A084400, A176699, A182979.
Cf. A268388 (complement without 1).
Cf. A124010, subsequence of A000028, A000961, A213925, A223490.
Cf. A228520, A186945 (Fermi-Dirac analog of Ramanujan primes, A104272, and Labos primes, A080359).
Cf. also A268385, A268391, A268392.

Programs

  • Haskell
    a050376 n = a050376_list !! (n-1)
    a050376_list = filter ((== 1) . a209229 . a100995) [1..]
    -- Reinhard Zumkeller, Mar 19 2013
    
  • Maple
    isA050376 := proc(n)
        local f,e;
        f := ifactors(n)[2] ;
        if nops(f) = 1 then
            e := op(2,op(1,f)) ;
            if isA000079(e) then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    A050376 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            2 ;
        else
            for a from procname(n-1)+1 do
                if isA050376(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, May 26 2017
  • Mathematica
    nn = 300; t = {}; k = 1; While[lim = nn^(1/k); lim > 2,  t = Join[t, Prime[Range[PrimePi[lim]]]^k]; k = 2 k]; t = Union[t] (* T. D. Noe, Apr 05 2012 *)
  • PARI
    {a(n)= local(m, c, k, p); if(n<=1, 2*(n==1), n--; c=0; m=2; while( cMichael Somos, Apr 15 2005; edited by Michel Marcus, Aug 07 2021
    
  • PARI
    lst(lim)=my(v=primes(primepi(lim)),t); forprime(p=2,sqrt(lim),t=p; while((t=t^2)<=lim,v=concat(v,t))); vecsort(v) \\ Charles R Greathouse IV, Apr 10 2012
    
  • PARI
    is_A050376(n)=2^#binary(n=isprimepower(n))==n*2 \\ M. F. Hasler, Apr 08 2015
    
  • PARI
    ispow2(n)=n && n>>valuation(n,2)==1
    is(n)=ispow2(isprimepower(n)) \\ Charles R Greathouse IV, Sep 18 2015
    
  • PARI
    isok(n)={my(e=isprimepower(n)); e && !bitand(e,e-1)} \\ Andrew Howroyd, Oct 16 2024
    
  • Python
    from sympy import isprime, perfect_power
    def ok(n):
      if isprime(n): return True
      answer = perfect_power(n)
      if not answer: return False
      b, e = answer
      if not isprime(b): return False
      while e%2 == 0: e //= 2
      return e == 1
    def aupto(limit):
      alst, m = [], 1
      for m in range(1, limit+1):
        if ok(m): alst.append(m)
      return alst
    print(aupto(241)) # Michael S. Branicky, Feb 03 2021
    
  • Python
    from sympy import primepi, integer_nthroot
    def A050376(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 18-19 2025
  • Scheme
    (define A050376 (MATCHING-POS 1 1 (lambda (n) (= 1 (A064547 n)))))
    ;; Requires also my IntSeq-library. - Antti Karttunen, Feb 09 2016
    

Formula

From Vladimir Shevelev, Mar 16 2012: (Start)
Product_{i>=1} a(i)^k_i = n!, where k_i = floor(n/a(i)) - floor(n/a(i)^2) + floor(n/a(i)^3) - floor(n/a(i)^4) + ...
Denote by A(x) the number of terms not exceeding x.
Then A(x) = pi(x) + pi(x^(1/2)) + pi(x^(1/4)) + pi(x^(1/8)) + ...
Conversely, pi(x) = A(x) - A(sqrt(x)). For example, pi(37) = A(37) - A(6) = 16-4 = 12. (End)
A209229(A100995(a(n))) = 1. - Reinhard Zumkeller, Mar 19 2013
From Vladimir Shevelev, Aug 31 2013: (Start)
A Fermi-Dirac analog of Euler product: Zeta(s) = Product_{k>=1} (1+a(k)^(-s)), for s > 1.
In particular, Product_{k>=1} (1+a(k)^(-2)) = Pi^2/6. (End)
a(n) = A268385(A268392(n)). [By their definitions.] - Antti Karttunen, Feb 10 2016
A000040 union A001248 union A030514 union A179645 union A030635 union .... - R. J. Mathar, May 26 2017

Extensions

Edited by Charles R Greathouse IV, Mar 17 2010
More examples from Daniel Forgues, Feb 09 2011

A030078 Cubes of primes.

Original entry on oeis.org

8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
Offset: 1

Views

Author

Keywords

Comments

Numbers with exactly three factorizations: A001055(a(n)) = 3 (e.g., a(4) = 1*343 = 7*49 = 7*7*7). - Reinhard Zumkeller, Dec 29 2001
Intersection of A014612 and A000578. Intersection of A014612 and A030513. - Wesley Ivan Hurt, Sep 10 2013
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (9/7) * (28/26) * (124/126) * (344/342) * (1332/1330) * ... = 48/35. - Dimitris Valianatos, Mar 06 2020
There exist 5 groups of order p^3, when p prime, so this is a subsequence of A054397. Three of them are abelian: C_p^3, C_p^2 X C_p and C_p X C_p X C_p = (C_p)^3. For 8 = 2^3, the 2 nonabelian groups are D_8 and Q_8; for odd prime p, the 2 nonabelian groups are (C_p x C_p) : C_p, and C_p^2 : C_p (remark, for p = 2, these two semi-direct products are isomorphic to D_8). Here C, D, Q mean Cyclic, Dihedral, Quaternion groups of the stated order; the symbols X and : mean direct and semidirect products respectively. - Bernard Schott, Dec 11 2021

Examples

			a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
		

References

  • Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.

Crossrefs

Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
Cf. A060800, A131991, A000578, subsequence of A046099.
Subsequence of A007422 and of A054397.

Programs

Formula

n such that A062799(n) = 3. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^3. - Omar E. Pol, Jul 27 2009
A064380(a(n)) = A000010(a(n)). - Vladimir Shevelev, Apr 19 2010
A003415(a(n)) = A079705(n). - Reinhard Zumkeller, Jun 26 2011
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
A000005(a(n)) = 4. - Wesley Ivan Hurt, Sep 10 2013
a(n) = A119959(n) * A008864(n) -1.- R. J. Mathar, Aug 13 2019
Sum_{n>=1} 1/a(n) = P(3) = 0.1747626392... (A085541). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) (A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) (A088453). (End)

A030513 Numbers with 4 divisors.

Original entry on oeis.org

6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022

References

  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.

Crossrefs

Equals the disjoint union of A006881 and A030078.

Programs

  • Magma
    [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
    
  • Mathematica
    Select[Range[200], DivisorSigma[0,#]==4&] (* Harvey P. Dale, Apr 06 2011 *)
  • PARI
    is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A030513(n):
        def f(x): return int(n+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 16 2024

Formula

{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009

Extensions

Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010

A030637 Numbers with 19 divisors.

Original entry on oeis.org

262144, 387420489, 3814697265625, 1628413597910449, 5559917313492231481, 112455406951957393129, 14063084452067724991009, 104127350297911241532841, 3244150909895248285300369, 210457284365172120330305161, 699053619999045038539170241
Offset: 1

Views

Author

Keywords

Comments

18th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

Crossrefs

Programs

Formula

a(n)=A000040(n)^(19-1)=A000040(n)^(18). - Omar E. Pol, May 06 2008

Extensions

a(6) corrected, Mar 26 2007

A139572 Numbers with 37 divisors.

Original entry on oeis.org

68719476736, 150094635296999121, 14551915228366851806640625, 2651730845859653471779023381601, 30912680532870672635673352936887453361, 12646218552730347184269489080961456410641
Offset: 1

Views

Author

Omar E. Pol, May 07 2008

Keywords

Comments

36th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

Formula

a(n) = A000040(n)^(37-1) = A000040(n)^36.

Extensions

More terms from R. J. Mathar, Feb 05 2010

A329050 Square array A(n,k) = prime(n+1)^(2^k), read by descending antidiagonals (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...; Fermi-Dirac primes (A050376) in matrix form, sorted into rows by their prime divisor.

Original entry on oeis.org

2, 4, 3, 16, 9, 5, 256, 81, 25, 7, 65536, 6561, 625, 49, 11, 4294967296, 43046721, 390625, 2401, 121, 13, 18446744073709551616, 1853020188851841, 152587890625, 5764801, 14641, 169, 17, 340282366920938463463374607431768211456, 3433683820292512484657849089281, 23283064365386962890625, 33232930569601, 214358881, 28561, 289, 19
Offset: 0

Views

Author

Antti Karttunen and Peter Munn, Nov 02 2019

Keywords

Comments

This sequence is a permutation of A050376, so every positive integer is the product of a unique subset, S_factors, of its terms. If we restrict S_factors to be chosen from a subset, S_0, consisting of numbers from specified rows and/or columns of this array, there are notable sequences among those that may be generated. See the examples. Other notable sequences can be generated if we restrict the intersection of S_factors with specific rows/columns to have even cardinality. In any of the foregoing cases, the numbers in the resulting sequence form a group under the binary operation A059897(.,.).
Shares with array A246278 the property that columns grow downward by iterating A003961, and indeed, this array can be obtained from A246278 by selecting its columns 1, 2, 8, 128, ..., 2^((2^k)-1), for k >= 0.
A(n,k) is the image of the lattice point with coordinates X=n and Y=k under the inverse of the bijection f defined in the first comment of A306697. This geometric relationship can be used to construct an isomorphism from the polynomial ring GF(2)[x,y] to a ring over the positive integers, using methods similar to those for constructing A297845 and A306697. See A329329, the ring's multiplicative operator, for details.

Examples

			The top left 5 X 5 corner of the array:
  n\k |   0     1       2           3                   4
  ----+-------------------------------------------------------
   0  |   2,    4,     16,        256,              65536, ...
   1  |   3,    9,     81,       6561,           43046721, ...
   2  |   5,   25,    625,     390625,       152587890625, ...
   3  |   7,   49,   2401,    5764801,     33232930569601, ...
   4  |  11,  121,  14641,  214358881,  45949729863572161, ...
Column 0 continues as a list of primes, column 1 as a list of their squares, column 2 as a list of their 4th powers, and so on.
Every nonnegative power of 2 (A000079) is a product of a unique subset of numbers from row 0; every squarefree number (A005117) is a product of a unique subset of numbers from column 0. Likewise other rows and columns generate the sets of numbers from sequences:
Row 1:                 A000244 Powers of 3.
Column 1:              A062503 Squares of squarefree numbers.
Row 2:                 A000351 Powers of 5.
Column 2:              A113849 4th powers of squarefree numbers.
Union of rows 0 and 1:     A003586 3-smooth numbers.
Union of columns 0 and 1:  A046100 Biquadratefree numbers.
Union of row 0 / column 0: A122132 Oddly squarefree numbers.
Row 0 excluding column 0:  A000302 Powers of 4.
Column 0 excluding row 0:  A056911 Squarefree odd numbers.
All rows except 0:         A005408 Odd numbers.
All columns except 0:      A000290\{0} Positive squares.
All rows except 1:         A001651 Numbers not divisible by 3.
All columns except 1:      A252895 (have odd number of square divisors).
If, instead of restrictions on choosing individual factors of the product, we restrict the product to be of an even number of terms from each row of the array, we get A262675. The equivalent restriction applied to columns gives us A268390; applied only to column 0, we get A028260 (product of an even number of primes).
		

Crossrefs

Transpose: A329049.
Permutation of A050376.
Rows 1-4: A001146, A011764, A176594, A165425 (after the two initial terms).
Antidiagonal products: A191555.
Subtable of A182944, A242378, A246278, A329332.
A000290, A003961, A225546 are used to express relationship between terms of this sequence.
Related binary operations: A059897, A306697, A329329.
See also the table in the example section.

Programs

  • Mathematica
    Table[Prime[#]^(2^k) &[m - k + 1], {m, 0, 7}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Dec 28 2019 *)
  • PARI
    up_to = 105;
    A329050sq(n,k) = (prime(1+n)^(2^k));
    A329050list(up_to) = { my(v = vector(up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A329050sq(col, a-col))); (v); };
    v329050 = A329050list(up_to);
    A329050(n) = v329050[1+n];
    for(n=0,up_to-1,print1(A329050(n),", ")); \\ Antti Karttunen, Nov 06 2019

Formula

A(0,k) = 2^(2^k), and for n > 0, A(n,k) = A003961(A(n-1,k)).
A(n,k) = A182944(n+1,2^k).
A(n,k) = A329332(2^n,2^k).
A(k,n) = A225546(A(n,k)).
A(n,k+1) = A000290(A(n,k)) = A(n,k)^2.

Extensions

Example annotated for clarity by Peter Munn, Feb 12 2020

A139574 Numbers with 43 divisors.

Original entry on oeis.org

4398046511104, 109418989131512359209, 227373675443232059478759765625, 311973482284542371301330321821976049, 54763699237492901685126120802225273763666521, 61040881526285814362156628321386486455989674569
Offset: 1

Views

Author

Omar E. Pol, May 09 2008

Keywords

Comments

42nd powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

Formula

a(n)=A000040(n)^(43-1)=A000040(n)^42.

Extensions

More terms from R. J. Mathar, May 11 2008

A139573 Numbers with 41 divisors.

Original entry on oeis.org

1099511627776, 12157665459056928801, 9094947017729282379150390625, 6366805760909027985741435139224001, 452592555681759518058893560348969204658401
Offset: 1

Views

Author

Omar E. Pol, May 07 2008

Keywords

Comments

40th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

Formula

a(n)=A000040(n)^(41-1)=A000040(n)^40.

Extensions

More terms from Jon E. Schoenfield, May 18 2010

A139575 Numbers with 47 divisors.

Original entry on oeis.org

70368744177664, 8862938119652501095929, 142108547152020037174224853515625, 749048330965186233494494102694564493649, 801795320536133573571931534665380233173841533961
Offset: 1

Views

Author

Omar E. Pol, May 09 2008

Keywords

Comments

46th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

Formula

a(n)=A000040(n)^(47-1)=A000040(n)^46.

Extensions

More terms from R. J. Mathar, May 11 2008

A067004 Number of numbers <= n with same number of divisors as n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 5, 1, 6, 4, 5, 1, 7, 2, 8, 3, 6, 7, 9, 1, 3, 8, 9, 4, 10, 2, 11, 5, 10, 11, 12, 1, 12, 13, 14, 3, 13, 4, 14, 6, 7, 15, 15, 1, 4, 8, 16, 9, 16, 5, 17, 6, 18, 19, 17, 1, 18, 20, 10, 1, 21, 7, 19, 11, 22, 8, 20, 2, 21, 23, 12, 13, 24, 9, 22, 2, 2, 25, 23, 3, 26, 27
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2001

Keywords

Examples

			a(10)=3 since 6,8,10 each have four divisors. a(11)=5 since 2,3,5,7,11 each have two divisors.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    R:= Vector(N):
    for n from 1 to N do
      v:= numtheory:-tau(n);
      R[v]:= R[v]+1;
      A[n]:= R[v];
    od:
    seq(A[n],n=1..N); # Robert Israel, May 04 2015
  • Mathematica
    b[_] = 0;
    a[n_] := a[n] = With[{t = DivisorSigma[0, n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
  • PARI
    a(n)=my(d=numdiv(n)); sum(k=1,n,numdiv(k)==d) \\ Charles R Greathouse IV, Sep 02 2015

Formula

Ordinal transform of A000005. - Franklin T. Adams-Watters, Aug 28 2006
a(A000040(n)^(p-1)) = n if p is prime. - Robert Israel, May 04 2015
Showing 1-10 of 27 results. Next