cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A036486 a(n) = ceiling((n^3)/2).

Original entry on oeis.org

0, 1, 4, 14, 32, 63, 108, 172, 256, 365, 500, 666, 864, 1099, 1372, 1688, 2048, 2457, 2916, 3430, 4000, 4631, 5324, 6084, 6912, 7813, 8788, 9842, 10976, 12195, 13500, 14896, 16384, 17969, 19652, 21438, 23328, 25327, 27436, 29660, 32000, 34461, 37044
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

a(n) is the number of compositions of even natural numbers into 3 parts < n. For example, a(2)=4 because compositions of even natural numbers into 3 parts < 2 are (0,0,0), (0,1,1), (1,0,1), and (1,1,0). a(3)=14 because compositions of even natural numbers into 3 parts <= 3 - 1 = 2 are (0,0,0), (0,1,1), (1,0,1), (1,1,0), (0,0,2), (0,2,0), (2,0,0), (1,1,2),(1,2,1),(2,1,1),(0,2,2),(2,0,2),(2,2,0) and (2,2,2). - Adi Dani, Jun 05 2011
Also the number of balls in a body-centered lattice cube with n layers. - K. G. Stier, Dec 26 2012

Crossrefs

Cf. A036487.

Programs

  • Magma
    [(2*n^3-(-1)^n+1)/4: n in [0..40]]; // Vincenzo Librandi, Jun 07 2011
    
  • Maple
    [ seq(ceil((n^3)/2), n=0..100) ];
    with (combinat):seq(count(Partition((n^3+1)), size=2), n=0..40); # Zerinvary Lajos, Mar 28 2008
  • Mathematica
    Table[Ceiling[n^3/2], {n, 0, 40}] (* Wesley Ivan Hurt, May 21 2014 *)
    LinearRecurrence[{3,-2,-2,3,-1},{0,1,4,14,32},50] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    a(n)=(2*n^3-(-1)^n+1)/4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(1+x+4*x^2) / ( (1+x)*(x-1)^4 ). - R. J. Mathar, Jun 06 2011
a(n) = (2*n^3 - (-1)^n + 1)/4. - Bruno Berselli, Jun 07 2011
a(n) = n^3 - A036487(n), where n^3 is the number of compositions of natural numbers into 3 parts < n. - R. J. Mathar, Jun 07 2011
a(n) = (n^3 + (n mod 2))/2. - Wesley Ivan Hurt, May 21 2014
E.g.f.: (x*(1 + 3*x + x^2)*cosh(x) + (1 + x + 3*x^2 + x^3)*sinh(x))/2. - Stefano Spezia, Sep 09 2022

A131476 a(n) = floor(n^3/3).

Original entry on oeis.org

0, 0, 2, 9, 21, 41, 72, 114, 170, 243, 333, 443, 576, 732, 914, 1125, 1365, 1637, 1944, 2286, 2666, 3087, 3549, 4055, 4608, 5208, 5858, 6561, 7317, 8129, 9000, 9930, 10922, 11979, 13101, 14291, 15552, 16884, 18290, 19773, 21333, 22973
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 27 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: x^2*(2 + 3*x + x^3)/((1 - x)^4*(1 + x + x^2)).
a(n) = (A057078(n) - A024001(n))/3. (End)
a(n) = (3*n^3 + 3*cos(2*Pi*n/3) + sqrt(3)*sin(2*Pi*n/3) - 3)/9. - Vladimir Reshetnikov, Oct 09 2016
a(n) = (n - 1)*n*(n + 1)/3 + floor(n/3). - Bruno Berselli, Jun 08 2017

A131479 a(n) = floor(n^4/4).

Original entry on oeis.org

0, 0, 4, 20, 64, 156, 324, 600, 1024, 1640, 2500, 3660, 5184, 7140, 9604, 12656, 16384, 20880, 26244, 32580, 40000, 48620, 58564, 69960, 82944, 97656, 114244, 132860, 153664, 176820, 202500, 230880, 262144, 296480, 334084, 375156
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 27 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 4*x^2*(1+x+x^2)/((1+x)*(1-x)^5).
a(n) = 4*A011863(n-1). (End)
a(n) = floor(n^2/2)*ceiling(n^2/2) = A007590(n) * A000982(n). - Enrique Pérez Herrero, May 31 2015
Sum_{n>=2} 1/a(n) = Sum_{n>=1} 1/(4n^4) + Sum_{n>=1} 1/(2n*(n+1)*(2n^2+2n+1)) = Zeta(4)/4 + (3-Pi*tanh(Pi/2))/2. - Enrique Pérez Herrero, May 31 2015
a(2*k) = 4*k^4; a(2*k+1) = 2*(k^3*(k+1) + k*(k+1)^3). - Robert Israel, Jun 01 2015
E.g.f.: (x*(x^3 + 6*x^2 + 7*x + 1)*cosh(x) + (x^4 + 6*x^3 + 7*x^2 + x - 1)*sinh(x))/4. - Stefano Spezia, Feb 18 2023

A131478 a(n) = ceiling(n^4/4).

Original entry on oeis.org

0, 1, 4, 21, 64, 157, 324, 601, 1024, 1641, 2500, 3661, 5184, 7141, 9604, 12657, 16384, 20881, 26244, 32581, 40000, 48621, 58564, 69961, 82944, 97657, 114244, 132861, 153664, 176821, 202500, 230881, 262144, 296481, 334084, 375157, 419904, 468541, 521284
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 27 2007

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(n^4/4) : n in [0..50]]; // Vincenzo Librandi, Oct 01 2011
    
  • Mathematica
    Ceiling[Range[0,40]^4/4] (* Harvey P. Dale, May 17 2019 *)
    CoefficientList[Series[(x(x^3 + 6x^2 + 7x + 1)Cosh[x]+ (x^4 + 6x^3 + 7x^2 + x + 3)Sinh[x])/4,{x,0,35}],x]Table[n!,{n,0,35}] (* Stefano Spezia, Feb 19 2023 *)
  • PARI
    vector(50, n, n--;ceil(n^4/4)) \\ Michel Marcus, Jun 16 2015
    
  • Python
    def A131478(n): return n**4+3>>2 # Chai Wah Wu, Jan 30 2023

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: x*(1 + 10*x^2 + x^4)/((1 - x)^5*(1 + x)).
a(n) + a(n+1) = A058919(n+1). (End)
a(n) = floor(n^4/4 + 3/4). - Bruno Berselli, Dec 21 2017
E.g.f.: (x*(x^3 + 6*x^2 + 7*x + 1)*cosh(x) + (x^4 + 6*x^3 + 7*x^2 + x + 3)*sinh(x))/4. - Stefano Spezia, Feb 18 2023

A192396 Square array T(n, k) = floor(((k+1)^n - (1+(-1)^k)/2)/2) read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 4, 4, 2, 0, 0, 8, 13, 8, 2, 0, 0, 16, 40, 32, 12, 3, 0, 0, 32, 121, 128, 62, 18, 3, 0, 0, 64, 364, 512, 312, 108, 24, 4, 0, 0, 128, 1093, 2048, 1562, 648, 171, 32, 4, 0, 0, 256, 3280, 8192, 7812, 3888, 1200, 256, 40, 5, 0
Offset: 0

Views

Author

Adi Dani, Jun 29 2011

Keywords

Comments

T(n,k) is the number of compositions of odd natural numbers into n parts <=k.

Examples

			T(2,4)=12: there are 12 compositions of odd natural numbers into 2 parts <=4
  1: (0,1), (1,0);
  3: (1,2), (2,1), (0,3), (3,0);
  5: (1,4), (4,1), (2,3), (3,2);
  7: (3,4), (4,3).
The table starts
    0,  0,   0,   0,    0,    0, ... A000004;
    0,  1,   1,   2,    2,    3, ... A004526;
    0,  2,   4,   8,   12,   18, ... A007590;
    0,  4,  13,  32,   62,  108, ... A036487;
    0,  8,  40, 128,  312,  648, ... A191903;
    0, 16, 121, 512, 1562, 3888, ... A191902;
    .        .      .       .    ...
with columns: A000004, A000079, A003462, A004171, A128531, A081341, ... .
Antidiagonal triangle begins:
  0;
  0,  0;
  0,  1,   0;
  0,  2,   1,   0;
  0,  4,   4,   2,   0;
  0,  8,  13,   8,   2,   0;
  0, 16,  40,  32,  12,   3,  0;
  0, 32, 121, 128,  62,  18,  3,  0;
  0, 64, 364, 512, 312, 108, 24,  4,  0;
		

Crossrefs

Programs

  • Magma
    A192396:= func< n,k | Floor(((k+1)^n - (1+(-1)^k)/2)/2) >;
    [A192396(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 11 2023
    
  • Maple
    A192396 := proc(n,k) (k+1)^n-(1+(-1)^k)/2 ; floor(%/2) ; end proc:
    seq(seq( A192396(d-k,k),k=0..d),d=0..10) ; # R. J. Mathar, Jun 30 2011
  • Mathematica
    T[n_, k_]:= Floor[((k+1)^n - (1+(-1)^k)/2)/2];
    Table[T[n-k,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A192396(n,k): return ((k+1)^n - ((k+1)%2))//2
    flatten([[A192396(n-k,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 11 2023

A131477 a(n) = ceiling(n^3/3).

Original entry on oeis.org

0, 1, 3, 9, 22, 42, 72, 115, 171, 243, 334, 444, 576, 733, 915, 1125, 1366, 1638, 1944, 2287, 2667, 3087, 3550, 4056, 4608, 5209, 5859, 6561, 7318, 8130, 9000, 9931, 10923, 11979, 13102, 14292, 15552, 16885, 18291, 19773, 21334, 22974
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 27 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: x*(1 + 3*x^2 + 2*x^3)/((1 - x)^4*(1 + x + x^2)).
a(n) = (A001093(n) - A049347(n))/3. (End)
a(n) = floor(n^3/3 + 2/3). - Bruno Berselli, Dec 21 2017

A173704 Partial sums of floor(n^3/2).

Original entry on oeis.org

0, 0, 4, 17, 49, 111, 219, 390, 646, 1010, 1510, 2175, 3039, 4137, 5509, 7196, 9244, 11700, 14616, 18045, 22045, 26675, 31999, 38082, 44994, 52806, 61594, 71435, 82411, 94605, 108105, 123000, 139384, 157352, 177004, 198441, 221769, 247095, 274531, 304190, 336190, 370650, 407694, 447447, 490039, 535601, 584269, 636180, 691476, 750300, 812800
Offset: 0

Views

Author

Mircea Merca, Nov 25 2010

Keywords

Comments

Partial sums of A036487.

Examples

			a(4) = floor(1/2) + floor(8/2) + floor(27/2) + floor(64/2) = 49.
		

Crossrefs

Cf. A036487.

Programs

  • Magma
    [Round((n^4+2*n^3+n^2-2*n)/8): n in [0..40]]; // Vincenzo Librandi, Jun 22 2011
  • Maple
    A173704 := proc(n) (n^4+2*n^3+n^2-2*n-1+(-1)^n)/8 ; end proc:
  • Mathematica
    Table[Sum[Floor[k^3/2], {k, 0, n}], {n,0,50}] (* G. C. Greubel, Nov 23 2016 *)
    Accumulate[Floor[Range[0,50]^3/2]] (* Harvey P. Dale, Jun 22 2025 *)

Formula

a(n) = Sum_{k=0..n} floor(k^3/2).
a(n) = round((n^4+2*n^3+n^2-2*n)/8).
a(n) = round((n^4+2*n^3+n^2-2*n-1)/8).
a(n) = floor((n^4+2*n^3+n^2-2*n)/8).
a(n) = ceiling((n-1)*(n+1)*(n^2+2*n+2)/8).
a(n) = a(n-2)+(n-1)*(2*n^2-n+2)/2, n>1.
From R. J. Mathar, Nov 26 2010: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
G.f.: -x^2*(4+x+x^2) / ( (1+x)*(x-1)^5 ).
a(n) = (n^4 + 2*n^3 + n^2 - 2*n - 1 + (-1)^n)/8. (End)

Extensions

Maple program replaced by R. J. Mathar, Nov 26 2010

A184632 Floor(1/{(8+n^4)^(1/4)}), where {}=fractional part.

Original entry on oeis.org

1, 4, 13, 32, 62, 108, 171, 256, 364, 500, 665, 864, 1098, 1372, 1687, 2048, 2456, 2916, 3429, 4000, 4630, 5324, 6083, 6912, 7812, 8788, 9841, 10976, 12194, 13500, 14895, 16384, 17968, 19652, 21437, 23328, 25326, 27436, 29659, 32000, 34460, 37044, 39753, 42592, 45562, 48668, 51911, 55296, 58824, 62500, 66325, 70304, 74438, 78732, 83187, 87808, 92596, 97556, 102689, 108000
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+8)^(1/4)];
    q[n_]:=Floor[1/p[n]];
    Table[q[n], {n, 1, 80}]
    FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{1},LinearRecurrence[{3,-2,-2,3,-1},{4,13,32,62,108},59]] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n)=floor(1/{(8+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-2a(n-2)-2a(n-3)+3a(n-4)-a(n-5) for n>=7.
Showing 1-8 of 8 results.