cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A037027 Skew Fibonacci-Pascal triangle read by rows.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 10, 9, 4, 1, 8, 20, 22, 14, 5, 1, 13, 38, 51, 40, 20, 6, 1, 21, 71, 111, 105, 65, 27, 7, 1, 34, 130, 233, 256, 190, 98, 35, 8, 1, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1, 144, 744, 1836
Offset: 0

Views

Author

Floor van Lamoen, Jan 01 1999

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (0,1), (1,0), (2,0). - Joerg Arndt, Jun 30 2011
T(n,k) is the number of lattice paths of length n, starting from the origin and ending at (n,k), using horizontal steps H=(1,0), up steps U=(1,1) and down steps D=(1,-1), never containing UUU, DD, HD. For instance, for n=4 and k=2, we have the paths; HHUU, HUHU, HUUH, UHHU, UHUH, UUHH, UUDU, UDUU, UUUD. - Emanuele Munarini, Mar 15 2011
Row sums form Pell numbers A000129, T(n,0) forms Fibonacci numbers A000045, T(n,1) forms A001629. T(n+k,n-k) is polynomial sequence of degree k.
T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, etc.).
As a Riordan array, this is (1/(1-x-x^2),x/(1-x-x^2)). An interesting factorization is (1/(1-x^2),x/(1-x^2))*(1/(1-x),x/(1-x)) [abs(A049310) times A007318]. Diagonal sums are the Jacobsthal numbers A001045(n+1). - Paul Barry, Jul 28 2005
T(n,k) = T'(n+1,k+1), T' given by [0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2005
Equals A049310 * A007318 as infinite lower triangular matrices. - Gary W. Adamson, Oct 28 2007
This triangle may also be obtained from the coefficients of the Morgan-Voyce polynomials defined by: Mv(x, n) = (x + 1)*Mv(x, n - 1) + Mv(x, n - 2). - Roger L. Bagula, Apr 09 2008
Row sums are A000129. - Roger L. Bagula, Apr 09 2008
Absolute value of coefficients of the characteristic polynomial of tridiagonal matrices with 1's along the main diagonal, and i's along the superdiagonal and the subdiagonal (where i=sqrt(-1), see Mathematica program). - John M. Campbell, Aug 23 2011
A037027 is jointly generated with A122075 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+(x+1)*v(n-1)x and v(n,x)=u(n-1,x)+x*v(n-1,x). See the Mathematica section at A122075. - Clark Kimberling, Mar 05 2012
For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
Row n, for n>=0, shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^n which is the denominator of the n-th convergent of the continued fraction [x+1, x+1, x+1, ...]; see A230000. - Clark Kimberling, Nov 13 2013
T(n,k) is the number of ternary words of length n having k letters 2 and avoiding a runs of odd length for the letter 0. - Milan Janjic, Jan 14 2017
Let T(m, n, k) be an m-bonacci Pascal's triangle, where T(m, n, 0) gives the values of F(m, n), the n-th m-bonacci number, and T(m, n, k) gives the values for the k-th convolution of F(m, n). Then the classic Pascal triangle is T(1, n, k) and this sequence is T(2, n, k). T(m, n, k) is the number of compositions of n using only the positive integers 1, 1' and 2 through m, with the part 1' used exactly k times. G.f. for k-th column of T(m, n, k): x/(1 - x - x^2 - ... - x^m)^k. The row sum for T(m, n, k) is the number of compositions of n using only the positive integers 1, 1' and 2 through m. G.f. for row sum of T(m, n, k): 1/(1 - 2x - x^2 - ... - x^m). - Gregory L. Simay, Jul 24 2021

Examples

			Ratio of row polynomials R(3)/R(2) = (3 + 5*x + 3*x^2 + x^3)/(2 + 2*x + x^2) = [1+x; 1+x, 1+x].
Triangle begins:
                                 1;
                              1,    1;
                           2,    2,    1;
                        3,    5,    3,    1;
                     5,   10,    9,    4,    1;
                  8,   20,   22,   14,    5,    1;
              13,   38,   51,   40,   20,    6,    1;
           21,   71,  111,  105,   65,   27,    7,    1;
        34,  130,  233,  256,  190,   98,   35,    8,    1;
     55,  235,  474,  594,  511,  315,  140,   44,    9,    1;
  89,  420,  942, 1324, 1295,  924,  490,  192,   54,   10,    1;
		

Crossrefs

A038112(n) = T(2n, n). A038137 is reflected version. Maximal row entries: A038149.
Diagonal differences are in A055830. Vertical sums are in A091186.
Some other Fibonacci-Pascal triangles: A027926, A036355, A074829, A105809, A109906, A111006, A114197, A162741, A228074.

Programs

  • Haskell
    a037027 n k = a037027_tabl !! n !! k
    a037027_row n = a037027_tabl !! n
    a037027_tabl = [1] : [1,1] : f [1] [1,1] where
       f xs ys = ys' : f ys ys' where
         ys' = zipWith3 (\u v w -> u + v + w) (ys ++ [0]) (xs ++ [0,0]) ([0] ++ ys)
    -- Reinhard Zumkeller, Jul 07 2012
  • Maple
    T := (n,k) -> `if`(n=0,1,binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -4)): seq(seq(simplify(T(n,k)), k=0..n), n=0..10); # Peter Luschny, Apr 25 2016
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
  • Mathematica
    Mv[x, -1] = 0; Mv[x, 0] = 1; Mv[x, 1] = 1 + x; Mv[x_, n_] := Mv[x, n] = ExpandAll[(x + 1)*Mv[x, n - 1] + Mv[x, n - 2]]; Table[ CoefficientList[ Mv[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Apr 09 2008 *)
    Abs[Flatten[Table[CoefficientList[CharacteristicPolynomial[Array[KroneckerDelta[#1,#2]+KroneckerDelta[#1,#2+1]*I+KroneckerDelta[#1,#2-1]*I&,{n,n}],x],x],{n,1,20}]]] (* John M. Campbell, Aug 23 2011 *)
    T[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k-n)/2, (k-n+1)/2, -n, -4];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 16 2019, after Peter Luschny *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, if( n==0 && k==0, 1, T(n-1, k) + T(n-1, k-1) + T(n-2, k)))}; /* Michael Somos, Sep 29 2003 */
    
  • PARI
    T(n,k)=if(nPaul D. Hanna, Feb 27 2004
    

Formula

T(n, m) = T'(n-1, m) + T'(n-2, m) + T'(n-1, m-1), where T'(n, m) = T(n, m) for n >= 0 and 0< = m <= n and T'(n, m) = 0 otherwise.
G.f.: 1/(1 - y - y*z - y^2).
G.f. for k-th column: x/(1-x-x^2)^k.
T(n, m) = Sum_{k=0..n-m} binomial(m+k, m)*binomial(k, n-k-m), n >= m >= 0, otherwise 0. - Wolfdieter Lang, Jun 17 2002
T(n, m) = ((n-m+1)*T(n, m-1) + 2*(n+m)*T(n-1, m-1))/(5*m), n >= m >= 1; T(n, 0)= A000045(n+1); T(n, m)= 0 if n < m. - Wolfdieter Lang, Apr 12 2000
Chebyshev coefficient triangle (abs(A049310)) times Pascal's triangle (A007318) as product of lower triangular matrices. T(n, k) = Sum_{j=0..n} binomial((n+j)/2, j)*(1+(-1)^(n+j))*binomial(j, k)/2. - Paul Barry, Dec 22 2004
Let R(n) = n-th row polynomial in x, with R(0)=1, then R(n+1)/R(n) equals the continued fraction [1+x;1+x, ...(1+x) occurring (n+1) times ..., 1+x] for n >= 0. - Paul D. Hanna, Feb 27 2004
T(n,k) = Sum_{j=0..n} binomial(n-j,j)*binomial(n-2*j,k); in Egorychev notation, T(n,k) = res_w(1-w-w^2)^(-k-1)*w^(-n+k+1). - Paul Barry, Sep 13 2006
Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A000129(n+1), A006190(n+1), A001076(n+1), A052918(n), A005668(n+1), A054413(n), A041025(n), A099371(n+1), A041041(n), A049666(n+1), A041061(n), A140455(n+1), A041085(n), A154597(n+1), A041113(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 respectively. - Philippe Deléham, Nov 29 2009
T((m+1)*n+r-1, m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} k/n*T((m+1)*n-k-1, m*n-1)*(r+k,r), n >= m > 1.
T(n-1,m-1) = (m/n)*Sum_{k=1..n-m+1} k*A000045(k)*T(n-k-1,m-2), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n,k) = binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -4) for n >= 1. - Peter Luschny, Apr 25 2016

Extensions

Examples from Paul D. Hanna, Feb 27 2004

A001002 Number of dissections of a convex (n+2)-gon into triangles and quadrilaterals by nonintersecting diagonals.

Original entry on oeis.org

1, 1, 3, 10, 38, 154, 654, 2871, 12925, 59345, 276835, 1308320, 6250832, 30142360, 146510216, 717061938, 3530808798, 17478955570, 86941210950, 434299921440, 2177832612120, 10959042823020, 55322023332420, 280080119609550, 1421744205767418, 7234759677699954
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is number of (2,3)-rooted trees on n nodes.
This sequence appears to be a transform of the Fibonacci numbers A000045. This sequence is to the Fibonacci numbers as the Catalan numbers A000108 is to the all ones sequence. See link to Mathematica program. - Mats Granvik, Dec 30 2017
a(n) is the number of parking functions of size n avoiding the patterns 231, 312, and 321. - Lara Pudwell, Apr 10 2023

Examples

			a(3)=10 because a convex pentagon can be dissected in 5 ways into triangles (draw 2 diagonals from any of the 5 vertices) and in 5 ways into a triangle and a quadrilateral (draw any of the 5 diagonals).
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 211 (3.2.73-74)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

n*a(n) = A038112(n-1), n > 0.

Programs

  • GAP
    List([0..25], n->Sum([0..Int(n/2)],k->Binomial(2*n-k,n+k)*Binomial(n+k,k)/(n+1))); # Muniru A Asiru, Mar 30 2018
  • Maple
    a:= proc(n) option remember; `if`(n<2, 1, (n*(22*n-11)*
          a(n-1) + (9*n-6)*(3*n-4)*a(n-2))/(5*n*(n+1)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 21 2021
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[y - y^2 - y^3, {y, 0, 30}], x], x]]
    a[n_] := CatalanNumber[n]*Hypergeometric2F1[1/2-n/2, -n/2, -2n, -4]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 20 2015, after Peter Luschny *)
    a[n_] := a[n] = If[n == 0, 1, Sum[a[i] a[n - 1 - i], {i, 0, n - 1}] + Sum[a[i] a[j] a[n - 2 - i - j], {i, 0, n - 2}, {j, 0, n - 2 - i}]];
    Table[a[n], {n, 0, 30}] (* Li Han, Jan 02 2021 *)
  • Maxima
    T(n,k):=if n<0 or k<0 then 0 else if nVladimir Kruchinin, Oct 03 2014 */
    
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x-x^2-x^3+x^2*O(x^n)),n+1))
    
  • PARI
    a(n)=if(n<0,0,sum(k=0,n\2,(2*n-k)!/k!/(n-2*k)!)/(n+1)!)
    
  • PARI
    a(n)=sum(k=0,n\2,binomial(2*n-k,n+k)*binomial(n+k,k))/(n+1) \\ Hanna
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=1+(1/x)*sum(m=1, n+1, Dx(m-1, (x^2+x^3 +x^2*O(x^n))^m/m!)); polcoeff(A, n)}  \\ Paul D. Hanna, Jun 22 2012
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=exp(sum(m=1, n+1, Dx(m-1, (x^2+x^3 +x^2*O(x^n))^m/x/m!)+x*O(x^n))); polcoeff(A, n)}  \\ Paul D. Hanna, Jun 22 2012
    
  • Sage
    A001002 = lambda n: catalan_number(n)*hypergeometric([1/2-n/2, -n/2], [-2*n], -4) if n>0 else 1
    [A001002(n).n(100).round() for n in range(24)] # Peter Luschny, Oct 03 2014
    

Formula

G.f. (offset 1) is series reversion of x - x^2 - x^3.
a(n) = (1/(n+1))*Sum_{k=ceiling(n/2)..n} binomial(n+k, k)*binomial(k, n-k). - Len Smiley
D-finite with recurrence 5*n*(n+1) * a(n) = 11*n*(2*n-1) * a(n-1) + 3*(3*n-2)*(3*n-4) * a(n-2). - Len Smiley
G.f.: (4*sin(asin((27*x+11)/16)/3)-1)/(3*x). - Paul Barry, Feb 02 2005
G.f. satisfies: A(x) = 1 + x*A(x)^2 + x^2*A(x)^3. - Paul D. Hanna, Jun 22 2012
Antidiagonal sums of triangle A104978 which has g.f. F(x,y) that satisfies: F = 1 + x*F^2 + x*y*F^3. - Paul D. Hanna, Mar 30 2005
a(n) = Sum_{k=0..floor(n/2)} C(2*n-k, n+k)*C(n+k, k)/(n+1). - Paul D. Hanna, Mar 30 2005
G.f. satisfies: x = Sum_{n>=1} 1/(1+x*A(x))^(2*n) * Product_{k=1..n} (1 - 1/(1+x*A(x))^k). - Paul D. Hanna, Apr 05 2012
G.f.: 1 + (1/x)*Sum_{n>=1} d^(n-1)/dx^(n-1) (x^2+x^3)^n/n!. - Paul D. Hanna, Jun 22 2012
G.f.: exp( Sum_{n>=1} d^(n-1)/dx^(n-1) ((x^2+x^3)^n/x)/n! ). - Paul D. Hanna, Jun 22 2012
Logarithmic derivative yields A213684. - Paul D. Hanna, Jun 22 2012
a(n) ~ 3^(3*n+3/2) / (2 * sqrt(2*Pi) * 5^(n+1/2) * n^(3/2)). - Vaclav Kotesovec, Mar 09 2014
a(n) = Catalan(n)*hypergeom([1/2-n/2, -n/2], [-2*n], -4) for n>0. - Peter Luschny, Oct 03 2014
a(n) = [x^n] 1/(1 - x - x^2)^(n+1)/(n + 1). - Ilya Gutkovskiy, Mar 29 2018
a(n) = -Sum_{i=1..n} A217596(i) * a(n-i) for n>0. - Muhammed Sefa Saydam, Jan 27 2025
a(n) = -Sum_{i=1..n+2} A217596(i) * A217596(n-i+2) for n >= 0. - Muhammed Sefa Saydam, Jul 24 2025

Extensions

Revised by Emeric Deutsch and Len Smiley, Jun 05 2005

A111006 Another version of Fibonacci-Pascal triangle A037027.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 5, 0, 0, 0, 3, 10, 8, 0, 0, 0, 1, 9, 20, 13, 0, 0, 0, 0, 4, 22, 38, 21, 0, 0, 0, 0, 1, 14, 51, 71, 34, 0, 0, 0, 0, 0, 5, 40, 111, 130, 55, 0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89, 0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144
Offset: 0

Views

Author

Philippe Deléham, Oct 02 2005

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Row sums are the Jacobsthal numbers A001045(n+1) and column sums form Pell numbers A000129.
Maximal column entries: A038149 = {1, 1, 2, 5, 10, 22, ...}.
T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, ...).
Triangle read by rows: T(n,n-k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)). - Philippe Deléham, Feb 17 2014
Diagonal sums are A013979(n). - Philippe Deléham, Feb 17 2014
T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and 1 X 2 tiles. - Emeric Deutsch, Aug 14 2014

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 2, 3;
  0, 0, 1, 5,  5;
  0, 0, 0, 3, 10,  8;
  0, 0, 0, 1,  9, 20, 13;
  0, 0, 0, 0,  4, 22, 38,  21;
  0, 0, 0, 0,  1, 14, 51,  71,  34;
  0, 0, 0, 0,  0,  5, 40, 111, 130,  55;
  0, 0, 0, 0,  0,  1, 20, 105, 233, 235,  89;
  0, 0, 0, 0,  0,  0,  6,  65, 256, 474, 420, 144;
		

Crossrefs

Cf. A000045, A000129, A001045, A037027, A038112, A038149, A084938, A128100 (reversed version).
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Programs

  • Haskell
    a111006 n k = a111006_tabl !! n !! k
    a111006_row n = a111006_tabl !! n
    a111006_tabl =  map fst $ iterate (\(us, vs) ->
       (vs, zipWith (+) (zipWith (+) ([0] ++ us ++ [0]) ([0,0] ++ us))
                        ([0] ++ vs))) ([1], [0,1])
    -- Reinhard Zumkeller, Aug 15 2013

Formula

T(0, 0) = 1, T(n, k) = 0 for k < 0 or for n < k, T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-2, k-2).
T(n, k) = A037027(k, n-k). T(n, n) = A000045(n+1). T(3n, 2n) = (n+1)*A001002(n+1) = A038112(n).
G.f.: 1/(1-yx(1-x)-x^2*y^2). - Paul Barry, Oct 04 2005
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A053524(n+1), (-1)^n*A083858(n+1), (-1)^n*A002605(n), A033999(n), A000007(n), A001045(n+1), A083099(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 02 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 respectively. - Philippe Deléham, Feb 17 2014

A215128 G.f.: Sum_{n>=0} d^n/dx^n (x + x^2)^(2*n) / n!.

Original entry on oeis.org

1, 2, 12, 64, 370, 2184, 13132, 79944, 491238, 3040400, 18926336, 118369368, 743199184, 4681668488, 29574616440, 187281906512, 1188494457492, 7556371963488, 48123031011036, 306929964849200, 1960230225450420, 12534313062502440, 80236414444623240
Offset: 0

Views

Author

Paul D. Hanna, Aug 04 2012

Keywords

Comments

Compare to: Sum_{n>=0} d^n/dx^n x^(2*n)/n! = 1/sqrt(1-4*x).

Examples

			G.f.: A(x) = 1 + 2*x + 12*x^2 + 64*x^3 + 370*x^4 + 2184*x^5 + 13132*x^6 +...
such that, by definition:
A(x) = 1 + d/dx (x+x^2)^2 + d^2/dx^2 (x+x^2)^4/2! + d^3/dx^3 (x+x^2)^6/3! + d^4/dx^4 (x+x^2)^8/4! + d^5/dx^5 (x+x^2)^10/5! +...
		

Crossrefs

Programs

  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=1+sum(m=1, n, Dx(m, x^(2*m)*(1+x+x*O(x^n))^(2*m)/m!)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

a(n) = (n+1)*A214372(n+1), where G(x) = x + (G(x) + G(x)^2)^2 is the g.f. of A214372.

A383479 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(3,0),(0,1).

Original entry on oeis.org

1, 2, 6, 24, 100, 420, 1792, 7752, 33858, 148940, 658944, 2929056, 13070876, 58521344, 262754040, 1182619280, 5334172518, 24104916504, 109111142376, 494630028200, 2245300152480, 10204575481320, 46429481139000, 211460450151600, 963971663881200, 4398118872144192
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2025

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(x,y) option remember;
         local t;
         t:= 0;
         if x >= 1 then t:= t + procname(x-1,y) fi;
         if x >= 3 then t:= t + procname(x-3,y) fi;
         if y >= 1 then t:= t + procname(x,y-1) fi;
         t
    end proc:
    f(0,0):= 1:
    seq(f(n,n),n=0..25); # Robert Israel, May 28 2025
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(2*n-2*k, n-3*k));

Formula

a(n) = [x^n] 1/(1 - x - x^3)^(n+1).
a(n) = (n+1) * A049140(n+1).
a(n) = Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(2*n-2*k,n-3*k).

A383480 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(4,0),(0,1).

Original entry on oeis.org

1, 2, 6, 20, 75, 294, 1176, 4752, 19350, 79310, 326898, 1353768, 5628441, 23478700, 98217840, 411879264, 1730924700, 7287941340, 30736775190, 129825892000, 549096132585, 2325216522420, 9857299586700, 41830206233400, 177673556967075, 755307883986084, 3213402383779812
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2025

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(x,y) option remember;
         local t;
         t:= 0;
         if x >= 1 then t:= t + procname(x-1,y) fi;
         if x >= 4 then t:= t + procname(x-4,y) fi;
         if y >= 1 then t:= t + procname(x,y-1) fi;
         t
    end proc:
    f(0,0):= 1:
    seq(f(n,n),n=0..26); # Robert Israel, May 28 2025
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n-3*k, n-4*k));

Formula

a(n) = [x^n] 1/(1 - x - x^4)^(n+1).
a(n) = (n+1) * A063021(n+1).
a(n) = Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n-3*k,n-4*k).

A231373 G.f. A(x) satisfies: A(x-x^2-x^3) = 1/sqrt(1-2*x-3*x^2), which is the g.f. the central trinomial coefficients (A002426).

Original entry on oeis.org

1, 1, 4, 16, 71, 327, 1550, 7490, 36720, 182028, 910330, 4585318, 23233722, 118315318, 605088690, 3105994302, 15994906965, 82602799485, 427662046960, 2219130114108, 11538302709769, 60102637378353, 313591732265662, 1638671208390738, 8574718477933404, 44926247350136232
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 71*x^4 + 327*x^5 + 1550*x^6 +...
where A(x-x^2-x^3)^2 = 1/(1-2*x-3*x^2):
A(x-x^2-x^3) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 51*x^5 + 141*x^6 + 393*x^7 + 1107*x^8 +...+ A002426(n)*x^n +...
The square of the g.f. begins (cf. A038112):
A(x)^2 = 1 + 2*x + 9*x^2 + 40*x^3 + 190*x^4 + 924*x^5 + 4578*x^6 +...
such that A(x)^2 = d/dx x*G(x) where G(x) is the g.f. of A001002:
G(x) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 154*x^5 + 654*x^6 +...
and satisfies G(x-x^2-x^3) = 1/(1-x-x^2).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[D[InverseSeries[Series[x - x^2 - x^3, {x, 0, 30}], x], x]], {x, 0, 30}], x] (* Vaclav Kotesovec, Mar 31 2014 *)
  • PARI
    {a(n)=local(G=serreverse(x-x^2-x^3+x^2*O(x^n)),A);A=sqrt(deriv(G));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} \\ = d^n/dx^n F
    {a(n)=local(A2=x); A2=1+sum(m=1, n+1, Dx(m, x^(2*m)*(1+x +x*O(x^n))^m/m!)); polcoeff(sqrt(A2), n)}
    for(n=0,30,print1(a(n),", "))

Formula

Self-convolution yields A038112.
G.f. A(x) satisfies:
(1) A(x) = sqrt( Sum_{n>=0} d^n/dx^n x^(2*n)*(1+x)^n/n! ).
(2) A(x) = sqrt((1+x)*(5-27*x)*A(x)^6 - 1)/2, from a formula by Mark van Hoeij in A038112.
(3) A(x) = sqrt( d/dx x*G(x) ) where G(x) = Series_Reversion(x-x^2-x^3)/x is the g.f. of A001002.
(4) A(x) = 1/sqrt(1 - 2*x*G(x) - 3*x^2*G(x)^2) where G(x) = Series_Reversion(x-x^2-x^3)/x is the g.f. of A001002.
Sum_{k=0..n} a(k)*a(n-k) = Sum_{k=0..n} C(n+k, k)*C(k, n-k), from a formula by Paul Barry in A038112.
Recurrence: 25*(n-2)*(n-1)*n*a(n) = 110*(n-2)*(n-1)*(2*n-3)*a(n-1) - (n-2)*(214*n^2 - 856*n + 717)*a(n-2) - 33*(2*n-5)*(18*n^2 - 90*n + 113)*a(n-3) - 81*(n-3)*(3*n-11)*(3*n-7)*a(n-4). - Vaclav Kotesovec, Nov 10 2013
a(n) ~ 3^(3/4) * GAMMA(3/4) * (27/5)^n / (2*10^(1/4)*Pi*n^(3/4)). - Vaclav Kotesovec, Dec 29 2013
Showing 1-7 of 7 results.