A344932 Values of n where A046800(n) produces a record.
0, 2, 4, 8, 12, 20, 24, 36, 48, 60, 72, 120, 144, 180, 288, 300, 360, 420, 540, 660, 720, 840, 1080
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
DeleteDuplicates[Join[{0},PrimeNu/@(2^Range[200]-1)],GreaterEqual] (* The program generates the first 14 terms of the sequence. *) (* Harvey P. Dale, Dec 24 2022 *)
a(4) = 2 because 2^4 - 1 = 15 = 3*5. From _Gus Wiseman_, Jul 04 2019: (Start) The sequence of Mersenne numbers together with their prime indices begins: 1: {} 3: {2} 7: {4} 15: {2,3} 31: {11} 63: {2,2,4} 127: {31} 255: {2,3,7} 511: {4,21} 1023: {2,5,11} 2047: {9,24} 4095: {2,2,3,4,6} 8191: {1028} 16383: {2,14,31} 32767: {4,11,36} 65535: {2,3,7,55} 131071: {12251} 262143: {2,2,2,4,8,21} 524287: {43390} 1048575: {2,3,3,5,11,13} (End)
a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i][2], {i, n}][j], {j, n}]] a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n,200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
a(n)=bigomega(2^n-1) \\ Charles R Greathouse IV, Apr 01 2013
a:= n-> min(numtheory[factorset](2^ithprime(n)-1)): seq(a(n), n=1..28); # Alois P. Heinz, Oct 01 2024
a = {}; Do[If[PrimeQ[n], w = 2^n - 1; c = FactorInteger[w]; b = c[[1]][[1]]; AppendTo[a, b]], {n, 2, 100}]; a (* Artur Jasinski, Dec 11 2007 *)
forprime(p=2,150,print1(factor(2^p-1)[1,1],", "))
for(n = 1, 100, print1(omega(12^n - 1), ", "))
For n=10 the prime factors of 2^n - 1 = 1023 are 3, 11 and 31, and 11 = n+1, 31 = 3n+1. Thus a(10)=2.
m = 2; n = 2; nmax = 200; While[n <= nmax, {l = FactorInteger[m^n - 1]; s = 0; For[i = 1, i <= Length[l], i++, {p = l[[i, 1]]; If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]];}]; a[n] = s;} n++;]; Table[a[n], {n, 2, nmax}]
a(n) = my(f = factor(2^n-1)); sum(k=1, #f~, ((f[k,1]-1) % n)==0); \\ Michel Marcus, Sep 10 2017
for(n = 1, 100, print1(omega(11^n - 1), ", "))
a[n_] := FactorInteger[ 2^Prime[n] - 1 ][[-1, 1]]; Table[ a[n], {n, 1, 18}] (* Jean-François Alcover, Dec 20 2011 *)
a(n)=my(f=factor(2^prime(n)-1)[,1]);f[#f] \\ Charles R Greathouse IV, Dec 05 2012
a(11) = 2 because 2^11 - 1 = 23*89 and both 23 and 89 have order 11.
Join[{0}, Table[cnt=0; f=Transpose[FactorInteger[2^n-1]][[1]]; Do[If[MultiplicativeOrder[2, f[[i]]]==n, cnt++ ], {i, Length[f]}]; cnt, {n, 2, 200}]]
a(n) = sumdiv(n, d, moebius(n/d)*omega(2^d-1)); \\ Michel Marcus, Sep 12 2017
a(n) = my(m=polcyclo(n, 2)); omega(m/gcd(m,n)) \\ Jeppe Stig Nielsen, Sep 01 2020
for(n = 1, 100, print1(omega(6^n - 1), ", "))
Comments