cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A015565 a(n) = 7*a(n-1) + 8*a(n-2), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 7, 57, 455, 3641, 29127, 233017, 1864135, 14913081, 119304647, 954437177, 7635497415, 61083979321, 488671834567, 3909374676537, 31274997412295, 250199979298361, 2001599834386887, 16012798675095097, 128102389400760775, 1024819115206086201, 8198552921648689607
Offset: 0

Views

Author

Keywords

Comments

A linear 2nd order recurrence. A Jacobsthal number sequence.
Binomial transform of A053573 (preceded by zero). - Paul Barry, Apr 09 2003
Second binomial transform of A080424. Binomial transform of A053573, with leading zero. Binomial transform is 0,1,9,81,729,....(9^n - 0^n)/9. Second binomial transform is 0,1,11,111,1111,... (A002275: repunits). - Paul Barry, Mar 14 2004
Number of walks of length n between any two distinct nodes of the complete graph K_9. Example: a(2)=7 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHI are: ACB, ADB, AEB, AFB, AGB, AHB and AIB. - Emeric Deutsch, Apr 01 2004
Unsigned version of A014990. - Philippe Deléham, Feb 13 2007
The ratio a(n+1)/a(n) converges to 8 as n approaches infinity. - Felix P. Muga II, Mar 09 2014

Examples

			G.f. = x + 7*x^2 + 57*x^3 + 455*x^4 + 3641*x^5 + 29127*x^6 + 233017*x^7 + ...
		

Crossrefs

Programs

Formula

From Paul Barry, Apr 09 2003: (Start)
a(n) = (8^n - (-1)^n)/9.
a(n) = J(3*n)/3 = A001045(3*n)/3. (End)
From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 8^(n-1) - a(n-1).
G.f.: x/(1-7*x-8*x^2). (End)
a(n) = Sum_{k = 0..n} A106566(n,k)*A099322(k). - Philippe Deléham, Oct 30 2008
a(n) = round(8^n/9). - Mircea Merca, Dec 28 2010
From Peter Bala, May 31 2024: (Start)
G.f: A(x) = x/(1 - x^2) o x/(1 - x^2), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A054878.
The black diamond product A(x) o A(x) is the g.f. for the number of walks of length n between any two distinct nodes of the complete graph K_81.
Row 8 of A062160. (End)
E.g.f.: exp(-x)*(exp(9*x) - 1)/9. - Elmo R. Oliveira, Aug 17 2024

A053428 a(n) = a(n-1) + 20*a(n-2), n >= 2; a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 21, 41, 461, 1281, 10501, 36121, 246141, 968561, 5891381, 25262601, 143090221, 648342241, 3510146661, 16476991481, 86679924701, 416219754321, 2149818248341, 10474213334761, 53470578301581, 262954844996801
Offset: 0

Views

Author

Barry E. Williams, Jan 10 2000

Keywords

Comments

Hankel transform is 1,20,0,0,0,0,0,0,0,0,0,0,... - Philippe Deléham, Nov 02 2008
Zero followed by this sequence gives the inverse binomial transform of A080424. - Paul Curtz, Jun 07 2011

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

Formula

a(n) = ((5^(n+1)) - (-4)^(n+1))/9.
G.f.: 1/((1+4*x)*(1-5*x)). - R. J. Mathar, Nov 16 2007

Extensions

More terms from James Sellers, Feb 02 2000

A191566 a(n) = 7*a(n-1) + (-1)^n*6*2^(n-1).

Original entry on oeis.org

1, 1, 19, 109, 811, 5581, 39259, 274429, 1921771, 13450861, 94159099, 659107549, 4613765131, 32296331341, 226074368539, 1582520481469, 11077643566891, 77543504575021, 542804532811579, 3799631728108189
Offset: 0

Views

Author

Paul Curtz, Jun 06 2011

Keywords

Comments

A007283(n) = 3*2^n. A091629(n+1) = 6*2^n.
a(n) + a(n+2) = 10 * (b(n) = 2, 11, 83, 569, 4007, ...).
b(n+1) = 7*b(n) - (-1)^n*3*2^n.
Inverse binomial transform of A007613(n).

Programs

Formula

a(n+1) - a(n) = 18 * (0 followed by A053573(n)).
a(n) = (7^n + 2*(-2)^n)/3. - Charles R Greathouse IV, Jun 06 2011
G.f.: (1-4*x)/(1 - 5*x - 14*x^2). - Bruno Berselli, Jun 07 2011
a(n) = 5*a(n-1) + 14*a(n-2).
Showing 1-3 of 3 results.