A152147
Irregular triangle in which row n lists k > 0 such that the sum of digits of k^n equals k.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 9, 1, 8, 17, 18, 26, 27, 1, 7, 22, 25, 28, 36, 1, 28, 35, 36, 46, 1, 18, 45, 54, 64, 1, 18, 27, 31, 34, 43, 53, 58, 68, 1, 46, 54, 63, 1, 54, 71, 81, 1, 82, 85, 94, 97, 106, 117, 1, 98, 107, 108, 1, 108, 1, 20, 40, 86, 103, 104, 106, 107, 126, 134, 135
Offset: 1
1, 2, 3, 4, 5, 6, 7, 8, 9;
1, 9;
1, 8, 17, 18, 26, 27; (A046459, with 0)
1, 7, 22, 25, 28, 36; (A055575 " )
1, 28, 35, 36, 46; (A055576 " )
1, 18, 45, 54, 64; (A055577 " )
1, 18, 27, 31, 34, 43, 53, 58, 68; (A226971 " )
1, 46, 54, 63;
1, 54, 71, 81,
1, 82, 85, 94, 97, 106, 117,
1, 98, 107, 108, etc.
-
def ok(k, r): return sum(map(int, str(k**r))) == k
def agen(rows, startrow=1, withzero=0):
for r in range(startrow, rows + startrow):
d, lim = 1, 1
while lim < r*9*d: d, lim = d+1, lim*10
yield from [k for k in range(1-withzero, lim+1) if ok(k, r)]
print([an for an in agen(13)]) # Michael S. Branicky, May 23 2021
A046459
Dudeney numbers: integers equal to the sum of the digits of their cubes.
Original entry on oeis.org
0, 1, 8, 17, 18, 26, 27
Offset: 1
a(3) = 8 because 8^3 = 512 and 5 + 1 + 2 = 8.
a(7) = 27 because 27^3 = 19683 and 1 + 9 + 6 + 8 + 3 = 27.
- H. E. Dudeney, 536 Puzzles & Curious Problems, reprinted by Souvenir Press, London, 1968, p. 36, #120.
- Italo Ghersi, Matematica dilettevole e curiosa, p. 115, Hoepli, Milano, 1967. [From Vincenzo Librandi, Jan 02 2009]
- F. Le Lionnais, Les nombres remarquables, Hermann, 1983.
- J. Roberts, Lure of the Integers, The Mathematical Association of America, 1992, p. 172.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 96.
-
[n: n in [0..100] | &+Intseq(n^3) eq n ]; // Vincenzo Librandi, Sep 16 2015
-
Select[Range[0,30],#==Total[IntegerDigits[#^3]]&] (* Harvey P. Dale, Dec 21 2014 *)
-
isok(k)=sumdigits(k^3)==k \\ Patrick De Geest, Dec 10 2024
-
a = [n for n in range(100) if sum(map(int, str(n ** 3))) == n] # David Radcliffe, Aug 18 2022
A055565
Sum of digits of n^4.
Original entry on oeis.org
0, 1, 7, 9, 13, 13, 18, 7, 19, 18, 1, 16, 18, 22, 22, 18, 25, 19, 27, 10, 7, 27, 22, 31, 27, 25, 37, 18, 28, 25, 9, 22, 31, 27, 25, 19, 36, 28, 25, 18, 13, 31, 27, 25, 37, 18, 37, 43, 27, 31, 13, 27, 25, 37, 27, 28, 43, 18, 31, 22, 18, 34, 37, 36, 37, 34, 45, 13, 31, 27, 7
Offset: 0
a(2) = 7 because 2^4 = 16 and 1+6 = 7.
-
for i from 0 to 200 do printf(`%d,`,add(j, j=convert(i^4, base, 10))) od;
-
a[n_Integer]:=Apply[Plus, IntegerDigits[n^4]]; Table[a[n], {n, 0, 100}] (* Vincenzo Librandi, Feb 23 2015 *)
-
a(n) = sumdigits(n^4); \\ Seiichi Manyama, Nov 16 2021
-
[sum((n^4).digits()) for n in (0..70)] # Bruno Berselli, Feb 23 2015
A055576
Sum of digits of a(n)^5 is equal to a(n).
Original entry on oeis.org
0, 1, 28, 35, 36, 46
Offset: 1
a(2) = 28 because 28^5 = 17210368 and 1+7+2+1+0+3+6+8 = 28
-
[n: n in [0..50] | &+Intseq(n^5) eq n ]; // Vincenzo Librandi, Feb 23 2015
-
Select[Range[0, 60], #==Total[IntegerDigits[#^5]] &] (* Vincenzo Librandi, Feb 23 2015 *)
-
lista(nn) = {for (n=0, nn, if (n^5 == sumdigits(n^5)^5, print1(n, ", ")););} \\ Michel Marcus, Feb 23 2015
A055577
Numbers k such that the sum of digits of k^6 is equal to k.
Original entry on oeis.org
0, 1, 18, 45, 54, 64
Offset: 1
a(2) = 18 because 18^6 = 34012224 and 3+4+0+1+2+2+2+4 = 18
A046000
a(n) is the largest number m equal to the sum of digits of m^n.
Original entry on oeis.org
1, 9, 9, 27, 36, 46, 64, 68, 63, 81, 117, 108, 108, 146, 154, 199, 187, 216, 181, 207, 207, 225, 256, 271, 288, 337, 324, 307, 328, 341, 396, 443, 388, 423, 463, 477, 424, 495, 469, 523, 502, 432, 531, 572, 603, 523, 592, 666, 667, 695, 685, 685, 739, 746, 739, 683, 684, 802, 754, 845, 793, 833, 865
Offset: 0
a(3) = 27 because 27 is the largest number with 27^3 = 19683 and 1+9+6+8+3 = 27.
a(5) = 46 because 46 is the largest number with 46^5 = 205962976 and 2+0+5+9+6+2+9+7+6 = 46.
- Amarnath Murthy, The largest and the smallest m-th power whose digits sum /product is its m-th root. To appear in Smarandache Notions Journal, 2003.
- Amarnath Murthy, e-book, "Ideas on Smarandache Notions" MS.LIT
- Joe Roberts, "Lure of the Integers", The Mathematical Association of America, 1992, p. 172.
-
meanDigit = 9/2; translate = 900; upperm[1] = translate;
upperm[n_] := Exp[-ProductLog[-1, -Log[10]/(meanDigit*n)]] + translate;
(* assuming that upper bound of m fits the implicit curve m = Log[10, m^n]*9/2 *)
a[0] = 1; a[n_] := (For[max = m = 0, m <= upperm[n], m++, If[m == Total[IntegerDigits[m^n]], max = m]]; max);
Table[a[n], {n, 0, 1000}] (* Jean-François Alcover, Jan 09 2018, updated Jul 07 2022 *)
-
def ok(k, n): return sum(map(int, str(k**n))) == k
def a(n):
d, lim = 1, 1
while lim < n*9*d: d, lim = d+1, lim*10
return next(k for k in range(lim, 0, -1) if ok(k, n))
print([a(n) for n in range(63)]) # Michael S. Branicky, Jul 06 2022
A281915
4th power analog of Keith numbers.
Original entry on oeis.org
1, 7, 19, 20, 22, 25, 28, 36, 77, 107, 110, 175, 789, 1528, 1932, 3778, 5200, 7043, 8077, 38855, 41234, 44884, 49468, 204386, 763283, 9423515, 73628992, 87146144, 146124072, 146293356, 326194628, 1262293219, 1321594778, 2767787511, 11511913540, 12481298961, 13639550655
Offset: 1
175^4 = 937890625:
9 + 3 + 7 + 8 + 9 + 0 + 6 + 2 + 5 = 49;
3 + 7 + 8 + 9 + 0 + 6 + 2 + 5 + 49 = 89;
7 + 8 + 9 + 0 + 6 + 2 + 5 + 49 + 89 = 175.
-
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
for n from 1 to q do b:=n^w; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
(* function keithQ[ ] is defined in A007629 *)
a281915[n_] := Join[{1, 7}, Select[Range[10, n], keithQ[#, 4]&]]
a281915[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
A055570
Sum of digits of (a(n)^4) is greater than or equal to a(n).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 28, 36
Offset: 0
a(2) = 2 because 2^4 = 16 and 1+6 = 7>= 2
A226971
Numbers k such that the sum of digits of k^7 is equal to k.
Original entry on oeis.org
0, 1, 18, 27, 31, 34, 43, 53, 58, 68
Offset: 1
a(3) = 18 because 18^7 = 612220032 and 6+1+2+2+2+0+0+3+2 = 18.
-
[n: n in [0..80] | &+Intseq(n^7) eq n]; // Vincenzo Librandi, Feb 23 2015
-
Select[Range[0, 100], #==Total[IntegerDigits[#^7]]&]
-
isok(k)=sumdigits(k^7)==k \\ Patrick De Geest, Dec 13 2024
-
[n for n in (0..70) if sum((n^7).digits()) == n] # Bruno Berselli, Feb 23 2015
A337356
Numbers whose digit sum of their square is equal to their square root.
Original entry on oeis.org
0, 1, 49, 484, 625, 784, 1296
Offset: 1
Showing 1-10 of 10 results.
Comments