A036912 Indices of the left-to-right maxima in A057635.
1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 36, 40, 48, 64, 72, 80, 96, 120, 128, 144, 160, 176, 192, 224, 240, 288, 320, 336, 384, 432, 480, 576, 672, 720, 768, 864, 960, 1056, 1152, 1280, 1296, 1344, 1440, 1536, 1680, 1728, 1920, 2112, 2208, 2304, 2400, 2592, 2688
Offset: 1
Keywords
A014197 Number of numbers m with Euler phi(m) = n.
2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, 0, 0, 0, 0, 0, 2, 0, 10, 0, 2, 0, 6, 0, 0, 0, 6, 0, 0, 0, 3
Offset: 1
Comments
Carmichael conjectured that there are no 1's in this sequence. - Jud McCranie, Oct 10 2000
Number of cyclotomic polynomials of degree n. - T. D. Noe, Aug 15 2003
Let v == 0 (mod 24), w = v + 24, and v < k < q < w, where k and q are integer. It seems that, for most values of v, there is no b such that b = a(k) + a(q) and b > a(v) + a(w). The first case where b > a(v) + a(w) occurs at v = 888: b = a(896) + a(900) = 15 + 4, b > a(888) + a(912), or 19 > 8 + 7. The first case where v < n < w and a(n) > a(v) + a(w) occurs at v = 2232: a(2240) > a(2232) + a(2256), or 27 > 7 + 8. - Sergey Pavlov, Feb 05 2017
One elementary result relating to phi(m) is that if m is odd, then phi(m)=phi(2m) because 1 and 2 both have phi value 1 and phi is multiplicative. - Roderick MacPhee, Jun 03 2017
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B39, pp. 144-146.
- Joe Roberts, Lure of The Integers, The Mathematical Association of America, 1992, entry 32, page 182.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Max A. Alekseyev, Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions, Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.2.
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- R. D. Carmichael, On Euler’s phi-function, Bull. Amer. Math. Soc. 13 (1907), 241-243.
- R. D. Carmichael, Note on Euler’s phi-function, Bull. Amer. Math. Soc. 28 (1922), 109-110.
- Kevin Ford, The number of solutions of phi(x)=m, arXiv:math/9907204 [math.NT], 1999.
- S. Sivasankaranarayana Pillai, On some functions connected with phi(n), Bull. Amer. Math. Soc. 35 (1929), 832-836.
- Primefan, Totient Answers For The First 1000 Integers.
- Eric Weisstein's World of Mathematics, Totient Function.
- Eric Weisstein's World of Mathematics, Totient Valence Function.
Crossrefs
Cf. A000010, A002202, A032446 (bisection), A049283, A051894, A055506, A057635, A057826, A058277 (nonzero terms), A058341, A063439, A066412, A070243 (partial sums), A070633, A071386 (positions of odd terms), A071387, A071388 (positions of primes), A071389 (where prime(n) occurs for the first time), A082695, A097942 (positions of records), A097946, A120963, A134269, A219930, A280611, A280709, A280712, A296655 (positions of positive even terms), A305353, A305656, A319048, A322019.
For records see A131934.
Column 1 of array A320000.
Programs
-
GAP
a := function(n) local S, T, R, max, i, k, r; S:=[]; for i in DivisorsInt(n)+1 do if IsPrime(i)=true then S:=Concatenation(S,[i]); fi; od; T:=[]; for k in [1..Size(S)] do T:=Concatenation(T,[S[k]/(S[k]-1)]); od; max := n*Product(T); R:=[]; for r in [1..Int(max)] do if Phi(r)=n then R:=Concatenation(R,[r]); fi; od; return Size(R); end; # Miles Englezou, Oct 22 2024
-
Magma
[#EulerPhiInverse(n): n in [1..100]]; // Marius A. Burtea, Sep 08 2019
-
Maple
with(numtheory): A014197:=n-> nops(invphi(n)): seq(A014197(n), n=1..200);
-
Mathematica
a[1] = 2; a[m_?OddQ] = 0; a[m_] := Module[{p, nmax, n, k}, p = Select[ Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; k = 0; While[n <= nmax, If[EulerPhi[n] == m, k++]; n++]; k]; Array[a, 92] (* Jean-François Alcover, Dec 09 2011, updated Apr 25 2016 *) With[{nn = 116}, Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]] (* Michael De Vlieger, Jul 19 2017 *)
-
PARI
A014197(n,m=1) = { n==1 && return(1+(m<2)); my(p,q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0,valuation(q=n\d,p=d+1), A014197(q\p^i,p))))} \\ M. F. Hasler, Oct 05 2009
-
PARI
a(n) = invphiNum(n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
-
Python
from sympy import totient, divisors, isprime, prod def a(m): if m == 1: return 2 if m % 2: return 0 X = (x + 1 for x in divisors(m)) nmax=m*prod(i/(i - 1) for i in X if isprime(i)) n=m k=0 while n<=nmax: if totient(n)==m:k+=1 n+=1 return k print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 18 2017, after Mathematica code
Formula
Dirichlet g.f.: Sum_{n>=1} a(n)*n^-s = zeta(s)*Product_(1+1/(p-1)^s-1/p^s). - Benoit Cloitre, Apr 12 2003
Limit_{n->infinity} (1/n) * Sum_{k=1..n} a(k) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707036... (see A082695). - Benoit Cloitre, Apr 12 2003
From Christopher J. Smyth, Jan 08 2017: (Start)
Euler transform = Product_{n>=1} (1-x^n)^(-a(n)) = g.f. of A120963.
Product_{n>=1} (1+x^n)^a(n)
= Product_{n>=1} ((1-x^(2n))/(1-x^n))^a(n)
= Product_{n>=1} (1-x^n)^(-A280712(n))
(End)
From Antti Karttunen, Dec 04 2018: (Start)
(End)
A006511 Largest inverse of totient function (A000010): a(n) is the largest x such that phi(x) = m, where m = A002202(n) is the n-th number in the range of phi.
2, 6, 12, 18, 30, 22, 42, 60, 54, 66, 46, 90, 58, 62, 120, 126, 150, 98, 138, 94, 210, 106, 162, 174, 118, 198, 240, 134, 142, 270, 158, 330, 166, 294, 276, 282, 420, 250, 206, 318, 214, 378, 242, 348, 354, 462, 254, 510, 262, 414, 274, 278, 426, 630, 298, 302
Offset: 1
Keywords
Comments
Always even, as phi(2n) = phi(n) when n is odd. - Alain Jacques (thegentleway(AT)bigpond.com), Jun 15 2006
References
- J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- Richard K. Guy, Letter to N. J. A. Sloane, Jun 1991.
Programs
-
Mathematica
phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl=={}, Return[If[n==1, {1}, {}]]]; val={}; p=Last[pl]; For[e=0; pe=1, e==0||Mod[n, (p-1)pe/p]==0, e++; pe*=p, val=Join[val, pe*phiinv[If[e==0, n, n*p/pe/(p-1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1+Divisors[n], PrimeQ]]; Last/@Select[phiinv/@Range[1, 200], #!={}&] (* phiinv[n, pl] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[n] = list of x with phi(x)=n *)
-
PARI
g(n) = if(n%2, 2*(n==1), forstep(k = floor(exp(Euler)*n*log(log(n^2))+2.5*n/log(log(n^2))), n, -1, if(eulerphi(k)==n, return(k)); if(k==n, return(0)))); \\ A057635 lista(nn) = for(m = 1, nn, if(istotient(m), print1(g(m), ", "))); \\ Jinyuan Wang, Aug 29 2019
-
PARI
lista(nmax) = my(s); for(n = 1, nmax, s = invphiMax(n); if(s > 0, print1(s, ", "))); \\ Amiram Eldar, Nov 14 2024, using Max Alekseyev's invphi.gp
-
Perl
use ntheory ":all"; my $k=1; for my $i (1..100) { my @v; do{@v=inverse_totient($k++)} until @v; print "$i $v[-1]\n"; } # Dana Jacobsen, Mar 04 2019
A032446 Number of solutions to phi(k) = 2n.
3, 4, 4, 5, 2, 6, 0, 6, 4, 5, 2, 10, 0, 2, 2, 7, 0, 8, 0, 9, 4, 3, 2, 11, 0, 2, 2, 3, 2, 9, 0, 8, 2, 0, 2, 17, 0, 0, 2, 10, 2, 6, 0, 6, 0, 3, 0, 17, 0, 4, 2, 3, 2, 9, 2, 6, 0, 3, 0, 17, 0, 0, 2, 9, 2, 7, 0, 2, 2, 3, 0, 21, 0, 2, 2, 0, 0, 7, 0, 12, 4, 3, 2, 12, 0, 2, 0, 8, 2, 10
Offset: 1
Comments
By Carmichael's conjecture, a(n) <> 1 for any n. See A074987. - Thomas Ordowski, Sep 13 2017
a(n) = 0 iff n is a term of A079695. - Bernard Schott, Oct 02 2021
Examples
If n = 8 then phi(x) = 2*8 = 16 is satisfied for only a(8) = 6 values of x, viz. 17, 32, 34, 40, 48, 60.
References
- Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, Second Edition, Dover Publications, Inc., NY, 1966, page 90.
Links
- T. D. Noe, Table of n, a(n) for n = 1..5000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- Matteo Caorsi and Sergio Cecotti, Geometric classification of 4d N=2 SCFTs, arXiv:1801.04542 [hep-th], 2018.
- Carl Pomerance, Popular values of Euler's function, Mathematica 27 (1980), 84-89.
Crossrefs
Programs
-
Magma
[#EulerPhiInverse( 2*n):n in [1..100]]; // Marius A. Burtea, Sep 08 2019
-
Maple
with(numtheory); [ seq(nops(invphi(2*n)), n=1..90) ];
-
Mathematica
t = Table[0, {100} ]; Do[a = EulerPhi[n]; If[a < 202, t[[a/2]]++ ], {n, 3, 10^5} ]; t
-
PARI
a(n) = invphiNum(2*n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
Extensions
Extended by Robin Trew (trew(AT)hcs.harvard.edu).
A049283 a(n) is the smallest k such that phi(k) = n, where phi is Euler's totient function, or a(n) = 0 if no such k exists.
1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, 0, 87, 0, 59, 0, 61, 0, 0, 0, 85, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 123, 0, 83, 0, 129, 0, 0, 0, 89
Offset: 1
Keywords
Examples
The smallest k such that phi(k) = 2 is k = 3, so a(2) = 3.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
Programs
-
Mathematica
Module[{nn=140,ep},ep=Table[{k,EulerPhi[k]},{k,0,nn}];Table[SelectFirst[ep,#[[2]]==n&],{n,nn}]][[;;,1]]/."NotFound"->0 (* Harvey P. Dale, Jul 29 2023 *)
-
PARI
a(n)=if(n>2,for(k=n+1,solve(x=n,2*n^2,x/(exp(Euler)*log(log(x))+3/log(log(x)))-n),if(eulerphi(k)==n,return(k)));0,2*n-1) \\ Charles R Greathouse IV, Nov 28 2012
-
PARI
x=1000;v=vector(x\(exp(Euler)*log(log(x))+3/log(log(x)))); for(n=1,x,t=eulerphi(n); if(t<=#v && !v[t], v[t]=n)); v \\ Charles R Greathouse IV, Nov 28 2012
-
PARI
a(n) = max(0, invphiMin(n)); \\ Amiram Eldar, Nov 15 2024, using Max Alekseyev's invphi.gp
A057826 Greatest number with totient 2n (or zero when no such number exists).
6, 12, 18, 30, 22, 42, 0, 60, 54, 66, 46, 90, 0, 58, 62, 120, 0, 126, 0, 150, 98, 138, 94, 210, 0, 106, 162, 174, 118, 198, 0, 240, 134, 0, 142, 270, 0, 0, 158, 330, 166, 294, 0, 276, 0, 282, 0, 420, 0, 250, 206, 318, 214, 378, 242, 348, 0, 354, 0, 462, 0, 0, 254, 510
Offset: 1
Keywords
Comments
If a(n) = 0, n is a nontotient number - see (A005277)/2.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
Programs
-
Mathematica
a = Table[0, {100}]; Do[ t = EulerPhi[n]/2; If[t < 101, a[[t]] = n], {n, 1, 10^3}]; a
-
PARI
a(n) = invphiMax(2*n); \\ Amiram Eldar, Nov 11 2024, using Max Alekseyev's invphi.gp
A328412 Number of solutions to (Z/mZ)* = C_2 X C_(2n), where (Z/mZ)* is the multiplicative group of integers modulo m.
2, 4, 4, 1, 3, 7, 0, 4, 4, 5, 3, 0, 0, 3, 7, 1, 0, 7, 0, 3, 6, 2, 3, 4, 0, 3, 1, 0, 3, 11, 0, 1, 7, 0, 3, 3, 0, 0, 3, 2, 3, 8, 0, 3, 4, 2, 0, 3, 0, 6, 3, 0, 3, 5, 5, 3, 0, 2, 0, 4, 0, 0, 3, 1, 3, 4, 0, 3, 7, 4, 0, 4, 0, 3, 3, 0, 0, 12, 0, 0, 4, 2, 3, 0, 0, 3, 4, 2, 3, 9, 0, 0
Offset: 1
Keywords
Comments
Examples
See the a-file for the solutions to (Z/mZ)* = C_2 X C_(2n) for n <= 5000.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Jianing Song, Solutions to (Z/mZ)* = C_2 X C_(2n), n <= 5000
- Wikipedia, Multiplicative group of integers modulo n
Crossrefs
Programs
-
PARI
a(n) = my(i=0, r=4*n, N=floor(exp(Euler)*r*log(log(r^2))+2.5*r/log(log(r^2)))); for(k=r+1, N, if(eulerphi(k)==r && lcm(znstar(k)[2])==r/2, i++)); i
A319048 a(n) is the greatest k such that A000010(k) divides n where A000010 is the Euler totient function.
2, 6, 2, 12, 2, 18, 2, 30, 2, 22, 2, 42, 2, 6, 2, 60, 2, 54, 2, 66, 2, 46, 2, 90, 2, 6, 2, 58, 2, 62, 2, 120, 2, 6, 2, 126, 2, 6, 2, 150, 2, 98, 2, 138, 2, 94, 2, 210, 2, 22, 2, 106, 2, 162, 2, 174, 2, 118, 2, 198, 2, 6, 2, 240, 2, 134, 2, 12, 2, 142, 2, 270, 2, 6, 2, 12, 2, 158, 2, 330
Offset: 1
Keywords
Comments
Sándor calls this function the totient maximum function and remarks that this function is well-defined, since a(n) can be at least 2, and cannot be greater than n^2 (when n > 6).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- József Sándor, On the Euler minimum and maximum functions, Notes on Number Theory and Discrete Mathematics, Volume 15, 2009, Number 3, Pages 1—8.
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{kmax = If[n <= 6, 10 n, n^2]}, For[k = kmax, True, k--, If[Divisible[n, EulerPhi[k]], Return[k]]]]; Array[a, 80] (* Jean-François Alcover, Sep 17 2018, from PARI *)
-
PARI
a(n) = {my(kmax = if (n<=6, 10*n, n^2)); forstep (k=kmax, 1, -1, if ((n % eulerphi(k)) == 0, return (k)););}
-
PARI
\\ (The first two functions could probably be combined in a smarter way): A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ From A014197 by M. F. Hasler A057635(n) = if(1==n,2,if((n%2),0,my(k=A014197(n),i=n); if(!k, 0, while(k, i++; if(eulerphi(i)==n, k--)); (i)))); A319048(n) = { my(m=0); fordiv(n,d, m = max(m,A057635(d))); (m); }; \\ Antti Karttunen, Sep 09 2018
-
PARI
a(n) = {my(d = divisors(n)); vecmax(vector(#d, i, invphiMax(d[i])));} \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp
Formula
a(n) = Max_{d|n} A057635(d). - Antti Karttunen, Sep 09 2018
A317993 Number of k such that (Z/kZ)* is isomorphic to (Z/nZ)*, where (Z/nZ)* is the multiplicative group of integers modulo n.
2, 2, 3, 3, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 4, 4, 2, 4, 4, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 4, 2, 1, 3, 2, 7, 4, 2, 4, 7, 3, 2, 4, 4, 3, 7, 2, 2, 3, 4, 2, 4, 7, 2, 4, 5, 3, 4, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 4, 3, 7, 2, 3, 2, 2, 5, 4, 7, 7, 2, 1, 2, 2, 2, 3, 2, 4, 3
Offset: 1
Keywords
Comments
Examples
The solutions to (Z/kZ)* = C_6 are k = 7, 9, 14 and 18, so a(7) = a(9) = a(14) = a(18) = 4. The solutions to (Z/kZ)* = C_2 X C_20 are k = 55, 75, 100, 110 and 150, so a(55) = a(75) = a(100) = a(110) = a(150) = 5. The solutions to (Z/kZ)* = C_2 X C_12 are k = 35, 39, 45, 52, 70, 78 and 90, so a(35) = a(39) = a(45) = a(52) = a(70) = a(78) = a(90) = 7.
Links
- Jianing Song, Table of n, a(n) for n = 1..20000
- Wikipedia, Multiplicative group of integers modulo n
A112720 Numbers m such that phi(m) = 1^d_1 + 2^d_2 + ... + k^d_k where d_1 d_2 ... d_k is the decimal expansion of m.
1, 2, 6883, 1132856, 11059812
Offset: 1
Comments
There is no further term up to 7*10^7.
a(6) > 10^12. - Giovanni Resta, Apr 13 2017
This sequence is full because for k > 10 and 10^k <= m < 10^(k+1), phi(m) > 10^k/f(10^k) > Sum_{i=1..k+1} i^9 >= Sum_{i=1..k+1} i^d_i, where f(n) = exp(gamma)*log(log(n)) + 2.5/log(log(n)) is given in A057635. - Jinyuan Wang, Aug 02 2020
Examples
phi(11059812) = 1^1 + 2^1 + 3^0 + 4^5 + 5^9 + 6^8 + 7^1 + 8^2 so 11059812 is in the sequence.
Programs
-
Mathematica
Do[d=IntegerDigits[n];k=Length[d];If[EulerPhi[n]==Sum[j^d[[j]], {j, k}], Print[n]], {n, 70000000}]
Comments
Links
Crossrefs
Programs
Mathematica
Formula
Extensions