A152271 a(n)=1 for even n and (n+1)/2 for odd n.
1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44
Offset: 0
Examples
G.f. = 1 + x + x^2 + 2*x^3 + x^4 + 3*x^5 + x^6 + 4*x^7 + x^8 + ... - _Michael Somos_, Mar 26 2022
Links
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Programs
-
Haskell
import Data.List (transpose) a152271 = a057979 . (+ 2) a152271_list = concat $ transpose [repeat 1, [1..]] -- Reinhard Zumkeller, Aug 11 2014
-
Mathematica
Table[If[EvenQ[n],1,(n+1)/2],{n,0,120}] (* or *) LinearRecurrence[{0,2,0,-1},{1,1,1,2},120] (* or *) Riffle[Range[60],1,{1,-1,2}] (* Harvey P. Dale, Jan 20 2018 *)
-
PARI
Vec((1+x-x^2)/(1-2*x^2+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 12 2012
-
PARI
a(n)=gcd(n+1,(n+1)\2) \\ Charles R Greathouse IV, Mar 13 2012
-
Python
def A152271(n): return n+1>>1 if n&1 else 1 # Chai Wah Wu, Jan 04 2024
Formula
a(n) = 2*a(n-2) - a(n-4) with a(0)=a(1)=a(2)=1 and a(3)=2.
a(n) = (a(n-2) + a(n-3))/a(n-1).
G.f.: (1 + x - x^2)/(1 - 2*x^2 + x^4).
a(n) = A057979(n+2).
a(n)*a(n+1) = floor((n+2)/2) = A008619(n). - Paul Barry, Feb 27 2009
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*0^floor((n-2k)/2). - Paul Barry, Feb 27 2009
a(n) = gcd(floor((n+1)/2), (n+1)). - Enrique Pérez Herrero, Mar 13 2012
G.f.: U(0) where U(k) = 1 + x*(k+1)/(1 - x/(x + (k+1)/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 04 2012
E.g.f.: ((2 + x)*cosh(x) + sinh(x))/2. - Stefano Spezia, Mar 26 2022
a(n) = (-1)^n * a(-2-n) for all n in Z. - Michael Somos, Mar 26 2022
Comments