cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000179 Ménage numbers: a(0) = 1, a(1) = -1, and for n >= 2, a(n) = number of permutations s of [0, ..., n-1] such that s(i) != i and s(i) != i+1 (mod n) for all i.

Original entry on oeis.org

1, -1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123
Offset: 0

Views

Author

Keywords

Comments

According to rook theory, John Riordan considered a(1) to be -1. - Vladimir Shevelev, Apr 02 2010
This is also the value that the formulas of Touchard and of Wyman and Moser give and is compatible with many recurrences. - William P. Orrick, Aug 31 2020
Or, for n >= 3, the number of 3 X n Latin rectangles the second row of which is full cycle with a fixed order of its elements, e.g., the cycle (x_2,x_3,...,x_n,x_1) with x_1 < x_2 < ... < x_n. - Vladimir Shevelev, Mar 22 2010
Muir (p. 112) gives essentially this recurrence (although without specifying any initial conditions). Compare A186638. - N. J. A. Sloane, Feb 24 2011
Sequence discovered by Touchard in 1934. - L. Edson Jeffery, Nov 13 2013
Although these are also known as Touchard numbers, the problem was formulated by Lucas in 1891, who gave the recurrence formula shown below. See Cerasoli et al., 1988. - Stanislav Sykora, Mar 14 2014
An equivalent problem was formulated by Tait; solutions to Tait's problem were given by Muir (1878) and Cayley (1878). - William P. Orrick, Aug 31 2020
From Vladimir Shevelev, Jun 25 2015: (Start)
According to the ménage problem, 2*n!*a(n) is the number of ways of seating n married couples at 2*n chairs around a circular table, men and women in alternate positions, so that no husband is next to his wife.
It is known [Riordan, ch. 7] that a(n) is the number of arrangements of n non-attacking rooks on the positions of the 1's in an n X n (0,1)-matrix A_n with 0's in positions (i,i), i = 1,...,n, (i,i+1), i = 1,...,n-1, and (n,1). This statement could be written as a(n) = per(A_n). For example, A_5 has the form
001*11
1*0011
11001* (1)
11*100
0111*0,
where 5 non-attacking rooks are denoted by {1*}.
We can indicate a one-to-one correspondence between arrangements of n non-attacking rooks on the 1's of a matrix A_n and arrangements of n married couples around a circular table by the rules of the ménage problem, after the ladies w_1, w_2, ..., w_n have taken the chairs numbered
2*n, 2, 4, ..., 2*n-2 (2)
respectively. Suppose we consider an arrangement of rooks: (1,j_1), (2,j_2), ..., (n,j_n). Then the men m_1, m_2, ..., m_n took chairs with numbers
2*j_i - 3 (mod 2*n), (3)
where the residues are chosen from the interval[1,2*n]. Indeed {j_i} is a permutation of 1,...,n. So {2*j_i-3}(mod 2*n) is a permutation of odd positive integers <= 2*n-1. Besides, the distance between m_i and w_i cannot be 1. Indeed, the equality |2*(j_i-i)-1| = 1 (mod 2*n) is possible if and only if either j_i=i or j_i=i+1 (mod n) that correspond to positions of 0's in matrix A_n.
For example, in the case of positions of {1*} in(1) we have j_1=3, j_2=1, j_3=5, j_4=2, j_5=4. So, by(2) and (3) the chairs 1,2,...,10 are taken by m_4, w_2, m_1, w_3, m_5, w_4, m_3, w_5, m_2, w_1, respectively. (End)
The first 20 terms of this sequence were calculated in 1891 by E. Lucas (see [Lucas, p. 495]). - Peter J. C. Moses, Jun 26 2015
From Ira M. Gessel, Nov 27 2018: (Start)
If we invert the formula
Sum_{ n>=0 } u_n z^n = ((1-z)/(1+z)) F(z/(1+z)^2)
that Don Knuth mentions (see link) (i.e., set x=z/(1+z)^2 and solve for z in terms of x), we get a formula for F(z) = Sum_{n >= 0} n! z^n as a sum with all positive coefficients of (almost) powers of the Catalan number generating function.
The exact formula is (5) of the Yiting Li article.
This article also gives a combinatorial proof of this formula (though it is not as simple as one might want). (End)

Examples

			a(2) = 0; nothing works. a(3) = 1; (201) works. a(4) = 2; (2301), (3012) work. a(5) = 13; (20413), (23401), (24013), (24103), (30412), (30421), (34012), (34021), (34102), (40123), (43012), (43021), (43102) work.
		

References

  • W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th Ed. Dover, p. 50.
  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Nicola Zanichelli Editore, Bologna 1988, Chapter 3, p. 78.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 185, mu(n).
  • Kaplansky, Irving and Riordan, John, The probleme des menages, Scripta Math. 12, (1946). 113-124. See u_n.
  • E. Lucas, Théorie des nombres, Paris, 1891, pp. 491-495.
  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 1, p 256.
  • T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, Sect. 132, p. 112. - N. J. A. Sloane, Feb 24 2011
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
  • V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat. (J. of the Akademy of Sciences of Russia) 4(1992), 91-110. - Vladimir Shevelev, Mar 22 2010
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff.
  • J. Touchard, Permutations discordant with two given permutations, Scripta Math., 19 (1953), 108-119.
  • J. H. van Lint, Combinatorial Theory Seminar, Eindhoven University of Technology, Springer Lecture Notes in Mathematics, Vol. 382, 1974. See page 10.

Crossrefs

Diagonal of A058087. Also a diagonal of A008305.
A000179, A102761, and A335700 are all essentially the same sequence but with different conventions for the initial terms a(0) and a(1). - N. J. A. Sloane, Aug 06 2020

Programs

  • Haskell
    import Data.List (zipWith5)
    a000179 n = a000179_list !! n
    a000179_list = 1 : -1 : 0 : 1 : zipWith5
       (\v w x y z -> (x * y + (v + 2) * z - w) `div` v) [2..] (cycle [4,-4])
       (drop 4 a067998_list) (drop 3 a000179_list) (drop 2 a000179_list)
    -- Reinhard Zumkeller, Aug 26 2013
    
  • Maple
    A000179:= n ->add ((-1)^k*(2*n)*binomial(2*n-k,k)*(n-k)!/(2*n-k), k=0..n); # for n >= 1
    U:= proc(n) local k; add( (2*n/(2*n-k))*binomial(2*n-k,k)*(n-k)!*(x-1)^k, k=0..n); end; W := proc(r,s) coeff( U(r),x,s ); end; A000179 := n->W(n,0); # valid for n >= 1
  • Mathematica
    a[n_] := 2*n*Sum[(-1)^k*Binomial[2*n - k, k]*(n - k)!/(2*n - k), {k, 0, n}]; a[0] = 1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 05 2012, from 2nd formula *)
  • PARI
    \\ 3 programs adapted to a(1) = -1 by Hugo Pfoertner, Aug 31 2020
    
  • PARI
    {a(n) = my(A); if( n, A = vector(n,i,i-2); for(k=4, n, A[k] = (k * (k - 2) * A[k-1] + k * A[k-2] - 4 * (-1)^k) / (k-2)); A[n], 1)};/* Michael Somos, Jan 22 2008 */
    
  • PARI
    a(n)=if(n>1, round(2*n*exp(-2)*besselk(n, 2)), 1-2*n) \\ Charles R Greathouse IV, Nov 03 2014
    
  • PARI
    {a(n) = my(A); if( n, A = vector(n,i,i-2); for(k=5, n, A[k] = k * A[k-1] + 2 * A[k-2] + (4-k) * A[k-3] - A[k-4]); A[n], 1)} /* Michael Somos, May 02 2018 */
    
  • Python
    from math import comb, factorial
    def A000179(n): return 1 if n == 0 else sum((-2*n if k & 1 else 2*n)*comb(m:=2*n-k,k)*factorial(n-k)//m for k in range(n+1)) # Chai Wah Wu, May 27 2022

Formula

a(n) = ((n^2-2*n)*a(n-1) + n*a(n-2) - 4*(-1)^n)/(n-2) for n >= 3.
a(n) = A059375(n)/(2*n!) for n >= 2.
a(n) = Sum_{k=0..n} (-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k) for n >= 1. - Touchard (1934)
G.f.: ((1-x)/(1+x))*Sum_{n>=0} n!*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 26 2007
a(2^k+2) == 0 (mod 2^k); for k >= 2, a(2^k) == 2(mod 2^k). - Vladimir Shevelev, Jan 14 2011
a(n) = round( 2*n*exp(-2)*BesselK(n,2) ) for n > 1. - Mark van Hoeij, Oct 25 2011
a(n) ~ (n/e)^n * sqrt(2*Pi*n)/e^2. - Charles R Greathouse IV, Jan 21 2016
0 = a(n)*(-a(n+2) +a(n+4)) +a(n+1)*(+a(n+1) +a(n+2) -3*a(n+3) -5*a(n+4) +a(n+5)) +a(n+2)*(+2*a(n+2) +3*a(n+3) -3*a(n+4)) +a(n+3)*(+2*a(n+3) +a(n+4) -a(n+5)) +a(n+4)*(+a(n+4)), for all n>1. If a(-2..1) = (0, -1, 2, -1) then also true for those values of n. - Michael Somos, Apr 29 2018
D-finite with recurrence: 0 = a(n) +n*a(n+1) -2*a(n+2) +(-n-4)*a(n+3) +a(n+4), for all n in Z where a(n) = a(-n) for all n in Z and a(0) = 2, a(1) = -1. - Michael Somos, May 02 2018
a(n) = Sum_{k=0..n} A213234(n,k) * A000023(n-2*k) = Sum_{k=0..n} (-1)^k * n/(n-k) * binomial(n-k, k) * (n-2*k)! Sum_{j=0..n-2*k} (-2)^j/j! for n >= 1. [Wyman and Moser (1958)]. - William P. Orrick, Jun 25 2020
a(k+4*p) - 2*a(k+2*p) + a(k) is divisible by p, for any k > 0 and any prime p. - Mark van Hoeij, Jan 11 2022

Extensions

More terms from James Sellers, May 02 2000
Additional comments from David W. Wilson, Feb 18 2003
a(1) changed to -1 at the suggestion of Don Knuth. - N. J. A. Sloane, Nov 26 2018

A094047 Number of seating arrangements of n couples around a round table (up to rotations) so that each person sits between two people of the opposite sex and no couple is seated together.

Original entry on oeis.org

0, 0, 2, 12, 312, 9600, 416880, 23879520, 1749363840, 159591720960, 17747520940800, 2363738855385600, 371511874881100800, 68045361697964851200, 14367543450324474009600, 3464541314885011705344000, 946263209467217020194816000, 290616691739323132839591936000
Offset: 1

Views

Author

Matthijs Coster, Apr 29 2004

Keywords

Comments

Also, the number of Hamiltonian directed circuits in the crown graph of order n.
Or the number of those 3 X n Latin rectangles (cf. A000186) the second row of which is a full cycle. - Vladimir Shevelev, Mar 22 2010

References

  • V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr.Mat.(J. of the Akademy of Sciences of Russia) 4(1992),91-110.

Crossrefs

Cf. A059375 (rotations are counted as different).

Programs

  • Maple
    A094047 := proc(n)
        if n < 3 then
            0;
        else
            (-1)^n*2*(n-1)!+n!*add( (-1)^j*(n-j-1)!*binomial(2*n-j-1,j),j=0..n-1) ;
        end if;
    end proc: # R. J. Mathar, Nov 02 2015
  • Mathematica
    Join[{0},Table[(-1)^n 2(n-1)!+n!Sum[(-1)^j (n-j-1)!Binomial[2n-j-1,j],{j,0,n-1}],{n,2,20}]] (* Harvey P. Dale, Mar 07 2012 *)

Formula

For n>1, a(n) = (-1)^n * 2 * (n-1)! + n! * Sum_{j=0..n-1} (-1)^j * (n-j-1)! * binomial(2*n-j-1,j). - Max Alekseyev, Feb 10 2008
a(n) = A059375(n) / (2*n) = A000179(n) * (n-1)!.
Conjecture: a(n) +(-n^2+2*n-3)*a(n-1) -(n-2)*(n^2-3*n+5)*a(n-2) -3*(n-2)*(n-3)*a(n-3) +(n-2)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Nov 02 2015
Conjecture: (-n+2)*a(n) +(n-1)*(n^2-3*n+3)*a(n-1) +(n-2)*(n-1)*(n^2-3*n+3)*a(n-2) +(n-2)*(n-3)*(n-1)^2*a(n-3)=0. - R. J. Mathar, Nov 02 2015
a(n) = (n-1) * (n * (a(n-1) + a(n-2)) - 4 * (-1)^n * (n-3)!) for n > 3. - Seiichi Manyama, Jan 18 2020
a(n) = 2 * A306496(n). - Alois P. Heinz, Jun 19 2022

Extensions

Better definition from Joel B. Lewis, Jun 30 2007
Formula and further terms from Max Alekseyev, Feb 10 2008

A258338 Ternary ménage problem: number of seating arrangements for n opposite-sex couples around a circular table such that no spouses and no triples of the same sex seat next to each other. Seats are labeled.

Original entry on oeis.org

0, 8, 84, 3456, 219120, 19281600, 2324085120, 370554347520, 74897768655360, 18761274367718400, 5708008284647961600, 2072453585852572876800, 885341762559654194995200, 439630143301970662603161600, 251099117378080818090596352000, 163464570058143774978660630528000
Offset: 1

Views

Author

Max Alekseyev, May 27 2015

Keywords

Comments

Conjecture: (a(n)/n!^2)^(1/n) ~ (3+sqrt(5))/2. - Vaclav Kotesovec, May 29 2015

Crossrefs

Cf. A114939 (counts up to rotations and reflections)

Programs

  • Mathematica
    a[1] = 0;
    a[n_] := n! Sum[(-1)^j (n-j)! SeriesCoefficient[ SeriesCoefficient[ Tr[ MatrixPower[{{0, 1, 0, y^2, 0, 0}, {z y^2, 0, 1, 0, y^2, 0}, {z y^2, 0, 0, 0, y^2, 0}, {0, 1, 0, 0, 0, z}, {0, 1, 0, y^2, 0, z}, {0, 0, 1, 0, y^2, 0}}, 2n]], {y, 0, 2n}], {z, 0, j}], {j, 0, n}];
    Array[a, 16] (* Jean-François Alcover, Dec 03 2018, from 1st PARI program *)
  • PARI
    { a(n) = if(n<2, 0, n! * sum(j=0,n, (-1)^j * (n-j)! *polcoeff( polcoeff( trace([0, 1, 0, y^2, 0, 0; z*y^2, 0, 1, 0, y^2, 0; z*y^2, 0, 0, 0, y^2, 0; 0, 1, 0, 0, 0, z; 0, 1, 0, y^2, 0, z; 0, 0, 1, 0, y^2, 0]^(2*n)), 2*n,y) ,j,z)) ); }
    
  • PARI
    { a(n) = if(n<2, 0, n! *  polcoeff( serlaplace( polcoeff( trace([-y, z*y, z, 0, z*y, -y; -y, (z - 1)*y, 0, (z - 1)*y^2, z*y, -y; 0, (z - 1)*y, 0, (z - 1)*y^2, 0, -y; -y, 0, z - 1, 0, (z - 1)*y, 0; -y, z*y, z - 1, 0, (z - 1)*y, -y; -y, z*y, 0, z*y^2, z*y, -y]^n), n, y) )/(1-z) + O(z^(n+1)), n, z) ) }

Formula

a(n) = A114939(n) * 4 * n.

A137886 Number of (directed) Hamiltonian paths in the n-crown graph.

Original entry on oeis.org

12, 144, 3840, 138240, 6804000, 436504320, 35417088000, 3546005299200, 429451518988800, 61883150757120000, 10463789706751180800, 2051763183437532364800, 461802751261297205760000, 118254166096501129863168000
Offset: 3

Views

Author

Eric W. Weisstein, Feb 20 2008

Keywords

Comments

The reference to A094047 arises in the formula because that sequence is also the number of directed Hamiltonian cycles in the n-crown graph. (Each cycle can be broken in 2n ways to give a path.) - Andrew Howroyd, Feb 21 2016
Also, the number of ways of seating n married couples at 2*n chairs arranged side-by-side in a straight line, men and women in alternate positions, so that no husband is next to his wife. - Andrew Howroyd, Sep 19 2017

Crossrefs

Programs

  • Mathematica
    Table[2 n! Sum[(-1)^(n - k) k! Binomial[n + k, 2 k], {k, 0, n}], {n, 3, 20}] (* Eric W. Weisstein, Sep 20 2017 *)
    Table[2 (-1)^n n! HypergeometricPFQ[{1, -n, n + 1}, {1/2}, 1/4], {n, 3, 20}] (* Eric W. Weisstein, Sep 20 2017 *)
  • PARI
    /* needs the routine nhp() from the Alekseyev link */
    { A137886(n) = nhp( matrix(2*n,2*n,i,j, if(min(i,j)<=n && max(i,j)>n && abs(j-i)!=n, 1, 0)) ) }

Formula

For n>3, a(n) = 2*n*A094047(n) + n*a(n-1) = A059375(n) + n*a(n-1). - Andrew Howroyd, Feb 21 2016
a(n) ~ 4*Pi*n^(2*n+1) / exp(2*n+2). - Vaclav Kotesovec, Feb 25 2016
a(n) = (n-1)*n*a(n-1) + (n-1)^2*n*a(n-2) + (n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, Feb 25 2016
a(n) = 2*n! * A000271(n). - Andrew Howroyd, Sep 19 2017

Extensions

More terms from Max Alekseyev, Feb 13 2009
a(14) from Eric W. Weisstein, Jan 15 2014
a(15)-a(16) from Andrew Howroyd, Feb 21 2016

A277257 Multi-table menage seating arrangements: T(n,k) for n,k >= 1 equals the number of ways to seat n*k married couples at n round tables with 2*k seats each, such that (i) the gender of persons alternates around each table; and (ii) spouses do not sit next to each other.

Original entry on oeis.org

0, 8, 0, 96, 384, 12, 3456, 460800, 236160, 96, 168960, 3065610240, 125962905600, 764467200, 3120, 12211200, 51115799347200, 453840358706380800, 226918953109094400, 6383697868800, 115200, 1196052480, 1816224465420288000, 6896429934345052028928000
Offset: 1

Views

Author

Max Alekseyev, Oct 07 2016

Keywords

Comments

Tables and seats are labeled. For unlabeled version, see A277265.

Examples

			Table T(n,k):
n=1: 0, 0, 12, 96, 3120, 115200, ...
n=2: 8, 384, 236160, 764467200, ...
n=3: 96, 460800, 125962905600, ...
n=4: 3456, 3065610240, 453840358706380800, ...
...
		

Crossrefs

Cf. A059375 (row n=1), A277265.

Formula

T(n,k) = A277256(n,k) * 2^n * (n*k)!.

A357442 Consider a clock face with 2*n "hours" marked around the dial; a(n) = number of ways to match the even hours to the odd hours, modulo rotations and reflections.

Original entry on oeis.org

1, 1, 3, 5, 17, 53, 260, 1466, 10915, 93196, 917898, 10015299, 119914982, 1557364352, 21797494987, 326930305166, 5230756117008, 88922108947567, 1600594738591550, 30411281088326498, 608225534389576956, 12772735698577492558
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2022, based on an email from Barry Cipra, Oct 26 2022

Keywords

Crossrefs

Programs

  • PARI
    { a357442(n) = ( sumdiv(n,d,(n\d)!*d^(n\d)*eulerphi(d)) + n*sum(k=0,n\2,n!\k!\2^k\(n-2*k)!) + if(n%2, n*((n-1)\2)!*2^((n-1)\2) + sumdiv(n,d, eulerphi(d)*sum(k=0,n\d\2,(n\d)! \ (2*k+1)! \ ((n\d-1)\2-k)! * (d/2)^((n\d-1)\2-k) ))) )\n\4; } \\ Max Alekseyev, Nov 10 2022

Formula

See PARI code for the formula. - Max Alekseyev, Nov 10 2022

Extensions

Terms a(7) onward from Max Alekseyev, Nov 10 2022

A246994 a(n) has property that for any finite field F of odd characteristic and order >= a(n) there is no bijective map m: M_n(F)->M_n(F) such that permanent A = det m(A).

Original entry on oeis.org

3, 43, 79, 121, 167, 223, 289, 367, 449, 541, 641, 751, 877, 997, 1151, 1279, 1433, 1597
Offset: 3

Views

Author

N. J. A. Sloane, Sep 17 2014

Keywords

Crossrefs

Cf. A059375.
Showing 1-7 of 7 results.