Original entry on oeis.org
1, 4, 41, 1682, 346493, 428611842, 3711778551721, 257155729841782602, 160344312228246705825061, 999795050381098913077708678362, 68574254851594531153034763076600504945, 56440708711718407654211348073962227066902939026
Offset: 3
Original entry on oeis.org
1, 2, 4, 8, 20, 94, 2108, 695476, 120914640072, 102916053328656342226, 2647928508186688136206570909837012470132, 1011512706265078711983169811701795624935502997612381468564241675434874528
Offset: 0
A059732
Central column (even terms a(2*n,n)) of A059922.
Original entry on oeis.org
1, 2, 10, 1682, 120057399050, 2647928126185116317725365841617509110202, 255789488733925851648062359817182405921531524373868836229124342967857050792404036741709821164704443818848164235229369262826826092463167079882026
Offset: 0
A059733
Central column a(n,[n/2]) of A059922.
Original entry on oeis.org
1, 1, 2, 3, 10, 41, 1682, 346493, 120057399050, 51458022952549550101, 2647928126185116317725365841617509110202, 505756353132539355991535788904396967700352784465846135098293311191732045
Offset: 0
A002627
a(n) = n*a(n-1) + 1, a(0) = 0.
Original entry on oeis.org
0, 1, 3, 10, 41, 206, 1237, 8660, 69281, 623530, 6235301, 68588312, 823059745, 10699776686, 149796873605, 2246953104076, 35951249665217, 611171244308690, 11001082397556421, 209020565553572000, 4180411311071440001, 87788637532500240022
Offset: 0
[a(0), a(1), ...] = GAMMA(m+1,1)*exp(1) - GAMMA(m+1) = [exp(-1)*exp(1)-1, 2*exp(-1)*exp(1)-1, 5*exp(-1)*exp(1)-2, 16*exp(-1)*exp(1)-6, 65*exp(-1)*exp(1)-24, 326*exp(-1)*exp(1)-120, ...]. - _Stephen Crowley_, Jul 24 2009
From _Daniel Forgues_, Apr 25 2011: (Start)
n=0: {}: #{} = 0
n=1: {1}: #{()} = 1
n=2: {1,2}: #{(),(1),(2)} = 3
n=3: {1,2,3}: #{(),(1),(2),(3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)} = 10
(End)
x + 3*x^2 + 10*x^3 + 41*x^4 + 206*x^5 + 1237*x^6 + 8660*x^7 + 69281*x^8 + ...
- D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..449 (terms 0..100 from T. D. Noe)
- Sanka Balasuriya, Igor E. Shparlinski and Arne Winterhof, An average bound for character sums with some counter-dependent recurrence sequences, Rocky Mt. J. Math. 39, No. 5, 1403-1409 (2009).
- Elena Barcucci, Alberto Del Lungo, and Renzo Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- Jimmy Devillet, Bisymmetric and quasitrivial operations: characterizations and enumerations, arXiv:1712.07856 [math.RA], 2017.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 150
- Nicholas Kapoor and P. Christopher Staecker, Ahead of the Count: An Algorithm for Probabilistic Prediction of Instant Runoff (IRV) Elections, arXiv:2405.09009 [cs.CY], 2024. See p. 11.
- Daljit Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70. [Annotated scanned copy]
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 5.
Conjectured to give records in
A130147.
-
a002627 n = a002627_list !! n
a002627_list = 0 : map (+ 1) (zipWith (*) [1..] a002627_list)
-- Reinhard Zumkeller, Mar 24 2013
-
I:=[1]; [0] cat [n le 1 select I[n] else n*Self(n-1)+1:n in [1..21]]; // Marius A. Burtea, Aug 07 2019
-
A002627 := proc(n)
add( (n-j)!*binomial(n,j), j=1..n) ;
end proc:
seq(A002627(n),n=0..21) ; # Zerinvary Lajos, Jul 31 2006
-
FoldList[ #1*#2 + 1 &, 0, Range[21]] (* Robert G. Wilson v, Oct 11 2005 *)
RecurrenceTable[{a[0]==0,a[n]==n*a[n-1]+1},a,{n,30}] (* Harvey P. Dale, Mar 29 2015 *)
-
makelist(sum(n!/k!,k,1,n),n,0,40); /* Emanuele Munarini, Jun 20 2014 */
-
a(n)= n!*sum(k=1,n, 1/k!); \\ Joerg Arndt, Apr 24 2011
Showing 1-5 of 5 results.
Comments