cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A176305 Triangle T(n,k) = 1 -A002627(k) -A002627(n-k) +A002627(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 7, 1, 1, 31, 36, 31, 1, 1, 165, 194, 194, 165, 1, 1, 1031, 1194, 1218, 1194, 1031, 1, 1, 7423, 8452, 8610, 8610, 8452, 7423, 1, 1, 60621, 68042, 69066, 69200, 69066, 68042, 60621, 1, 1, 554249, 614868, 622284, 623284, 623284, 622284, 614868, 554249, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2010

Keywords

Comments

Row sums are {1, 2, 4, 16, 100, 720, 5670, 48972, 464660, 4829372, 54711782, ...}.
Row sums s(n) appear to obey (2-n)*s(n) +(n+2)*(n-1)*s(n-2) -n*(2*n-1)*s(n-2) +n*(n-2)*s(n-3)=0. - R. J. Mathar, May 04 2013

Examples

			Triangle begins as:
  1;
  1,      1;
  1,      2,      1;
  1,      7,      7,      1;
  1,     31,     36,     31,      1;
  1,    165,    194,    194,    165,      1;
  1,   1031,   1194,   1218,   1194,   1031,      1;
  1,   7423,   8452,   8610,   8610,   8452,   7423,      1;
  1,  60621,  68042,  69066,  69200,  69066,  68042,  60621,      1;
  1, 554249, 614868, 622284, 623284, 623284, 622284, 614868, 554249, 1;
		

Programs

  • Magma
    b:= func< n | Factorial(n)*(Exp(1)-1)>;
    function T(n,k)
      if k eq 0 or k eq n then return 1;
      else return 1 +Floor(b(n)) -Floor(b(k)) -Floor(b(n-k));
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 or k=n then 1
        else 1 +floor(n!*(exp(1)-1)) -floor(k!*(exp(1)-1)) -floor((n-k)!*(exp(1)-1))
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
  • Mathematica
    (* First program *)
    a[n_]:= a[n] = If[n==0,0,n*a[n-1] +1];
    T[n_, k_]:= T[n, k] = 1 -(a[k] +a[n-k] -a[n]);
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, 1 +Floor[n!*(E-1)] -Floor[k!*(E-1)] - Floor[(n-k)!*(E-1)]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 26 2019 *)
  • PARI
    T(n,k) = if(k==0 || k==n, 1, 1 +floor(n!*(exp(1)-1)) -floor(k!*(exp(1)-1)) -floor((n-k)!*(exp(1)-1)) ); \\ G. C. Greubel, Nov 26 2019
    
  • Sage
    @CachedFunction
    def b(n): return factorial(n)*(exp(1)-1);
    def T(n, k):
        if (k==0 or k==n): return 1
        else: return 1 +floor(b(n)) -floor(b(k)) -floor(b(n-k))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019

Formula

T(n,k) = T(n,n-k).

A096058 a(1) = 1, a(n) = largest prime divisor of b(n), where b(1) = 1, b(n) = n*b(n-1) + 1 = A002627(n).

Original entry on oeis.org

1, 3, 5, 41, 103, 1237, 433, 2389, 2711, 145007, 523, 164611949, 232603841, 201069629, 132267077, 35951249665217, 204405098431, 392881768421, 52255141388393, 8098687, 43894318766250120011, 386270005143001056097
Offset: 1

Views

Author

Amarnath Murthy, Jun 17 2004

Keywords

Examples

			a(4) = 41 because b(3) = 3*b(2)+1 = 3*3+1 = 10 and 4*10+1 = 41, which is prime.
b(n) = 1, 3, 10, 41, ... with largest prime divisors a(n) = 1, 3, 5, 41, ...
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,a(n+1)+1}; FactorInteger[#][[-1,1]]&/@NestList[nxt,{1,1},25][[;;,2]] (* Harvey P. Dale, Jul 22 2024 *)

Formula

a(n) = A006530(A002627(n)).

Extensions

Corrected and extended by Ray G. Opao, Aug 02 2004
Edited by Jonathan Sondow, Jan 09 2005

A193657 First difference of A002627.

Original entry on oeis.org

1, 2, 7, 31, 165, 1031, 7423, 60621, 554249, 5611771, 62353011, 754471433, 9876716941, 139097096919, 2097156230471, 33704296561141, 575219994643473, 10389911153247731, 198019483156015579, 3971390745517868001, 83608226221428800021, 1843561388182505040463
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Previous name was: Q-residue of the triangle A094727, where Q is the triangular array (t(i,j)) given by t(i,j)=1. For the definition of Q-residue, see A193649.
Number of n X n rook placements avoiding the pattern 001. - N. J. A. Sloane, Feb 04 2013
Let M(n) denote the n X n matrix with ones along the subdiagonal, ones everywhere above the main diagonal, the integers 2, 3, etc., along the main diagonal, and zeros everywhere else. Then a(n) is equal to the permanent of M(n). - John M. Campbell, Apr 20 2021

Crossrefs

Programs

  • Maple
    a := n -> 1-n*GAMMA(n+1)+exp(1)*n*GAMMA(n+1,1):
    seq(simplify(a(n)), n=0..9); # Peter Luschny, May 30 2014
  • Mathematica
    q[n_, k_] := n + k + 1;  (* A094727 *)
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]
    p[n_, k_] := 1
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 18}]    (* A193657 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* A193668 *)
    TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, 4}]]
    CoefficientList[Series[(E^x-x)/(x-1)^2,{x,0,20}],x]*Range[0,20]! (* Vaclav Kotesovec, Nov 20 2012 *)
  • PARI
    a(n) = { sum(k=0, n, if (k <= n-2, binomial(n,k)*(k+1)!, binomial(n,k)^2*k!));} \\ Michel Marcus, Feb 07 2013
    
  • Sage
    def A193657():
        a = 2; b = 7; c = 31; n = 3
        yield 1
        while True:
            yield a
            n += 1
            a,b,c = b,c,((n-2)^2*a+2*(1+n-n^2)*b+(3*n+n^2-2)*c)/n
    a = A193657(); [next(a) for n in range(19)] # Peter Luschny, May 30 2014

Formula

E.g.f.: (exp(x)-x)/(x-1)^2. - Vaclav Kotesovec, Nov 20 2012
a(n) ~ n!*n*(e-1). - Vaclav Kotesovec, Nov 20 2012
a(n) = 1-n*Gamma(n+1)+e*n*Gamma(n+1,1). - Peter Luschny, May 30 2014
a(n) +(-n-2)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, May 30 2014
From Peter Bala, Feb 10 2020: (Start)
a(n) = n*A002627(n) + 1.
a(n) = A114870(n) + n!.
a(n) = A296964(n+1) - A296964(n) for n >= 2.
a(1) = 2 and a(n) = (n^2*a(n-1) - 1)/(n - 1) for n >= 2. See A082425 for solutions to this recurrence with different starting values.
Also, a(0) = 1 and a(n) = n*( a(n-1) + ... + a(0) ) + 1 for n >= 1.
Second column of A176305. (End)

Extensions

Simpler definition by Peter Luschny, May 30 2014

A096057 a(1) = 1, a(n) = least prime divisor of b(n), where b(1) = 1, b(n) = n*b(n-1) + 1 = A002627(n).

Original entry on oeis.org

1, 3, 2, 41, 2, 1237, 2, 29, 2, 43, 2, 5, 2, 5, 2, 35951249665217, 2, 28001, 2, 1409, 2, 5, 2, 5, 2, 47, 2, 661, 2, 13, 2, 5, 2, 5, 2, 13, 2, 13, 2, 73, 2, 5, 2, 5, 2, 71, 2, 2437159, 2, 31, 2, 5, 2, 5, 2, 13, 2, 3020497643, 2, 23, 2, 5, 2, 5, 2, 5672529813439, 2, 15336863
Offset: 1

Views

Author

Amarnath Murthy, Jun 17 2004

Keywords

Examples

			a(4) = 41 because b(3) = 3*b(2)+1 = 3*3+1 = 10 and 4*10+1 = 41, which is prime.
b(n) = 1, 3, 10, 41, ... with least prime divisors a(n) = 1, 3, 2, 41, ....
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,a(n+1)+1}; FactorInteger[#][[1,1]]&/@NestList[nxt,{1,1},40][[All,2]] (* The program generates the first 41 terms of the sequence. *) (* Harvey P. Dale, Jun 21 2022 *)

Formula

a(n) = A020639(A002627(n)).

Extensions

Corrected and extended by Ray G. Opao, Aug 02 2004
Edited by Jonathan Sondow, Jan 09 2005
More terms from Michel Marcus, Mar 28 2020
More terms from Giovanni Resta, Mar 28 2020

A114870 a(n) = A002627(n+1) - A002627(n) - n!.

Original entry on oeis.org

0, 1, 5, 25, 141, 911, 6703, 55581, 513929, 5248891, 58724211, 714554633, 9397715341, 132870076119, 2009977939271, 32396622193141, 554297204755473, 10034223725151731, 191617109450287579, 3849745645109036001
Offset: 0

Views

Author

Creighton Dement, Feb 20 2006

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(E^x-1)/(1-x)^2,{x,0,20}],x]*Range[0,20]! (* Vaclav Kotesovec, Nov 20 2012 *)
    Table[Sum[Binomial[n, k] (k + 1)!, {k, 0, n - 1}], {n, 0, 19}] (* Michael De Vlieger, Sep 27 2016 *)

Formula

E.g.f.: (exp(x)-1)/(1-x)^2. - Vaclav Kotesovec, Nov 20 2012
a(n) = Sum_{k=0..n-1} C(n,k)*(k+1)! = Sum_{k=0..n-1} A074909(n-1,k)*(k+1)!. - Anton Zakharov, Sep 26 2016

A008292 Triangle of Eulerian numbers T(n,k) (n >= 1, 1 <= k <= n) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 66, 26, 1, 1, 57, 302, 302, 57, 1, 1, 120, 1191, 2416, 1191, 120, 1, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

The indexing used here follows that given in the classic books by Riordan and Comtet. For two other versions see A173018 and A123125. - N. J. A. Sloane, Nov 21 2010
Coefficients of Eulerian polynomials. Number of permutations of n objects with k-1 rises. Number of increasing rooted trees with n+1 nodes and k leaves.
T(n,k) = number of permutations of [n] with k runs. T(n,k) = number of permutations of [n] requiring k readings (see the Knuth reference). T(n,k) = number of permutations of [n] having k distinct entries in its inversion table. - Emeric Deutsch, Jun 09 2004
T(n,k) = number of ways to write the Coxeter element s_{e1}s_{e1-e2}s_{e2-e3}s_{e3-e4}...s_{e_{n-1}-e_n} of the reflection group of type B_n, using s_{e_k} and as few reflections of the form s_{e_i+e_j}, where i = 1, 2, ..., n and j is not equal to i, as possible. - Pramook Khungurn (pramook(AT)mit.edu), Jul 07 2004
Subtriangle for k>=1 and n>=1 of triangle A123125. - Philippe Deléham, Oct 22 2006
T(n,k)/n! also represents the n-dimensional volume of the portion of the n-dimensional hypercube cut by the (n-1)-dimensional hyperplanes x_1 + x_2 + ... x_n = k, x_1 + x_2 + ... x_n = k-1; or, equivalently, it represents the probability that the sum of n independent random variables with uniform distribution between 0 and 1 is between k-1 and k. - Stefano Zunino, Oct 25 2006
[E(.,t)/(1-t)]^n = n!*Lag[n,-P(.,t)/(1-t)] and [-P(.,t)/(1-t)]^n = n!*Lag[n, E(.,t)/(1-t)] umbrally comprise a combinatorial Laguerre transform pair, where E(n,t) are the Eulerian polynomials and P(n,t) are the polynomials in A131758. - Tom Copeland, Sep 30 2007
From Tom Copeland, Oct 07 2008: (Start)
G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1*x + (2+t)*x^2/2! + (6+6*t+t^2)*x^3/3! + ... gives row polynomials for A090582, the reverse f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra (Postnikov et al.).
G((t+1)*x, -1/(t+1)) = 1 + (1+t)*x + (1+3*t+2*t^2)*x^2/2! + ... gives row polynomials for A028246.
(End)
A subexceedant function f on [n] is a map f:[n] -> [n] such that 1 <= f(i) <= i for all i, 1 <= i <= n. T(n,k) equals the number of subexceedant functions f of [n] such that the image of f has cardinality k [Mantaci & Rakotondrajao]. Example T(3,2) = 4: if we identify a subexceedant function f with the word f(1)f(2)...f(n) then the subexceedant functions on [3] are 111, 112, 113, 121, 122 and 123 and four of these functions have an image set of cardinality 2. - Peter Bala, Oct 21 2008
Further to the comments of Tom Copeland above, the n-th row of this triangle is the h-vector of the simplicial complex dual to a permutohedron of type A_(n-1). The corresponding f-vectors are the rows of A019538. For example, 1 + 4*x + x^2 = y^2 + 6*y + 6 and 1 + 11*x + 11*x^2 + x^3 = y^3 + 14*y^2 + 36*y + 24, where x = y + 1, give [1,6,6] and [1,14,36,24] as the third and fourth rows of A019538. The Hilbert transform of this triangle (see A145905 for the definition) is A047969. See A060187 for the triangle of Eulerian numbers of type B (the h-vectors of the simplicial complexes dual to permutohedra of type B). See A066094 for the array of h-vectors of type D. For tables of restricted Eulerian numbers see A144696 - A144699. - Peter Bala, Oct 26 2008
For a natural refinement of A008292 with connections to compositional inversion and iterated derivatives, see A145271. - Tom Copeland, Nov 06 2008
The polynomials E(z,n) = numerator(Sum_{k>=1} (-1)^(n+1)*k^n*z^(k-1)) for n >=1 lead directly to the triangle of Eulerian numbers. - Johannes W. Meijer, May 24 2009
From Walther Janous (walther.janous(AT)tirol.com), Nov 01 2009: (Start)
The (Eulerian) polynomials e(n,x) = Sum_{k=0..n-1} T(n,k+1)*x^k turn out to be also the numerators of the closed-form expressions of the infinite sums:
S(p,x) = Sum_{j>=0} (j+1)^p*x^j, that is
S(p,x) = e(p,x)/(1-x)^(p+1), whenever |x| < 1 and p is a positive integer.
(Note the inconsistent use of T(n,k) in the section listing the formula section. I adhere tacitly to the first one.) (End)
If n is an odd prime, then all numbers of the (n-2)-th and (n-1)-th rows are in the progression k*n+1. - Vladimir Shevelev, Jul 01 2011
The Eulerian triangle is an element of the formula for the r-th successive summation of Sum_{k=1..n} k^j which appears to be Sum_{k=1..n} T(j,k-1) * binomial(j-k+n+r, j+r). - Gary Detlefs, Nov 11 2011
Li and Wong show that T(n,k) counts the combinatorially inequivalent star polygons with n+1 vertices and sum of angles (2*k-n-1)*Pi. An equivalent formulation is: define the total sign change S(p) of a permutation p in the symmetric group S_n to be equal to Sum_{i=1..n} sign(p(i)-p(i+1)), where we take p(n+1) = p(1). T(n,k) gives the number of permutations q in S_(n+1) with q(1) = 1 and S(q) = 2*k-n-1. For example, T(3,2) = 4 since in S_4 the permutations (1243), (1324), (1342) and (1423) have total sign change 0. - Peter Bala, Dec 27 2011
Xiong, Hall and Tsao refer to Riordan and mention that a traditional Eulerian number A(n,k) is the number of permutations of (1,2...n) with k weak exceedances. - Susanne Wienand, Aug 25 2014
Connections to algebraic geometry/topology and characteristic classes are discussed in the Buchstaber and Bunkova, the Copeland, the Hirzebruch, the Lenart and Zainoulline, the Losev and Manin, and the Sheppeard links; to the Grassmannian, in the Copeland, the Farber and Postnikov, the Sheppeard, and the Williams links; and to compositional inversion and differential operators, in the Copeland and the Parker links. - Tom Copeland, Oct 20 2015
The bivariate e.g.f. noted in the formulas is related to multiplying edges in certain graphs discussed in the Aluffi-Marcolli link. See p. 42. - Tom Copeland, Dec 18 2016
Distribution of left children in treeshelves is given by a shift of the Eulerian numbers. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link. See A278677, A278678 or A278679 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016
The row polynomial P(n, x) = Sum_{k=1..n} T(n, k)*x^k appears in the numerator of the o.g.f. G(n, x) = Sum_{m>=0} S(n, m)*x^m with S(n, m) = Sum_{j=0..m} j^n for n >= 1 as G(n, x) = Sum_{k=1..n} P(n, x)/(1 - x)^(n+2) for n >= 0 (with 0^0=1). See also triangle A131689 with a Mar 31 2017 comment for a rewritten form. For the e.g.f see A028246 with a Mar 13 2017 comment. - Wolfdieter Lang, Mar 31 2017
For relations to Ehrhart polynomials, volumes of polytopes, polylogarithms, the Todd operator, and other special functions, polynomials, and sequences, see A131758 and the references therein. - Tom Copeland, Jun 20 2017
For relations to values of the Riemann zeta function at integral arguments, see A131758 and the Dupont reference. - Tom Copeland, Mar 19 2018
Normalized volumes of the hypersimplices, attributed to Laplace. (Cf. the De Loera et al. reference, p. 327.) - Tom Copeland, Jun 25 2018

Examples

			The triangle T(n, k) begins:
n\k 1    2     3      4       5       6      7     8    9 10 ...
1:  1
2:  1    1
3:  1    4     1
4:  1   11    11      1
5:  1   26    66     26       1
6:  1   57   302    302      57       1
7:  1  120  1191   2416    1191     120      1
8:  1  247  4293  15619   15619    4293    247     1
9:  1  502 14608  88234  156190   88234  14608   502    1
10: 1 1013 47840 455192 1310354 1310354 455192 47840 1013  1
... Reformatted. - _Wolfdieter Lang_, Feb 14 2015
-----------------------------------------------------------------
E.g.f. = (y) * x^1 / 1! + (y + y^2) * x^2 / 2! + (y + 4*y^2 + y^3) * x^3 / 3! + ... - _Michael Somos_, Mar 17 2011
Let n=7. Then the following 2*7+1=15 consecutive terms are 1(mod 7): a(15+i), i=0..14. - _Vladimir Shevelev_, Jul 01 2011
Row 3: The plane increasing 0-1-2 trees on 3 vertices (with the number of colored vertices shown to the right of a vertex) are
.
.   1o (1+t)         1o t         1o t
.   |                / \          / \
.   |               /   \        /   \
.   2o (1+t)      2o     3o    3o    2o
.   |
.   |
.   3o
.
The total number of trees is (1+t)^2 + t + t = 1 + 4*t + t^2.
		

References

  • Mohammad K. Azarian, Geometric Series, Problem 329, Mathematics and Computer Education, Vol. 30, No. 1, Winter 1996, p. 101. Solution published in Vol. 31, No. 2, Spring 1997, pp. 196-197.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 106.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254; 2nd. ed., p. 268.[Worpitzky's identity (6.37)]
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1998, Vol. 3, p. 47 (exercise 5.1.4 Nr. 20) and p. 605 (solution).
  • Meng Li and Ron Goldman. "Limits of sums for binomial and Eulerian numbers and their associated distributions." Discrete Mathematics 343.7 (2020): 111870.
  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/
  • K. Mittelstaedt, A stochastic approach to Eulerian numbers, Amer. Math. Mnthly, 127:7 (2020), 618-628.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Figure M3416, Academic Press, 1995.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea, 1973, see p. 208.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 101.

Crossrefs

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Sum([0..k],j->(-1)^j*(k-j)^n*Binomial(n+1,j))))); # Muniru A Asiru, Jun 29 2018
    
  • Haskell
    import Data.List (genericLength)
    a008292 n k = a008292_tabl !! (n-1) !! (k-1)
    a008292_row n = a008292_tabl !! (n-1)
    a008292_tabl = iterate f [1] where
       f xs = zipWith (+)
         (zipWith (*) ([0] ++ xs) (reverse ks)) (zipWith (*) (xs ++ [0]) ks)
         where ks = [1 .. 1 + genericLength xs]
    -- Reinhard Zumkeller, May 07 2013
    
  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >; [[Eulerian(n,k): k in [0..n-1]]: n in [1..10]]; // G. C. Greubel, Apr 15 2019
  • Maple
    A008292 := proc(n,k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1,k)+(n-k+1)*procname(n-1,k-1) ; end if; end proc:
  • Mathematica
    t[n_, k_] = Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}];
    Flatten[Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, May 31 2011, after Michael Somos *)
    Flatten[Table[CoefficientList[(1-x)^(k+1)*PolyLog[-k, x]/x, x], {k, 1, 10}]] (* Vaclav Kotesovec, Aug 27 2015 *)
    Table[Tally[
       Count[#, x_ /; x > 0] & /@ (Differences /@
          Permutations[Range[n]])][[;; , 2]], {n, 10}] (* Li Han, Oct 11 2020 *)
  • PARI
    {T(n, k) = if( k<1 || k>n, 0, if( n==1, 1, k * T(n-1, k) + (n-k+1) * T(n-1, k-1)))}; /* Michael Somos, Jul 19 1999 */
    
  • PARI
    {T(n, k) = sum( j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j))}; /* Michael Somos, Jul 19 1999 */
    
  • PARI
    {A(n,c)=c^(n+c-1)+sum(i=1,c-1,(-1)^i/i!*(c-i)^(n+c-1)*prod(j=1,i,n+c+1-j))}
    
  • Python
    from sympy import binomial
    def T(n, k): return sum([(-1)**j*(k - j)**n*binomial(n + 1, j) for j in range(k + 1)])
    for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Nov 08 2017
    
  • R
    T <- function(n, k) {
      S <- numeric()
      for (j in 0:k) S <- c(S, (-1)^j*(k-j)^n*choose(n+1, j))
      return(sum(S))
    }
    for (n in 1:10){
      for (k in 1:n) print(T(n,k))
    } # Indranil Ghosh, Nov 08 2017
    
  • Sage
    [[sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Feb 23 2019
    

Formula

T(n, k) = k * T(n-1, k) + (n-k+1) * T(n-1, k-1), T(1, 1) = 1.
T(n, k) = Sum_{j=0..k} (-1)^j * (k-j)^n * binomial(n+1, j).
Row sums = n! = A000142(n) unless n=0. - Michael Somos, Mar 17 2011
E.g.f. A(x, q) = Sum_{n>0} (Sum_{k=1..n} T(n, k) * q^k) * x^n / n! = q * ( e^(q*x) - e^x ) / ( q*e^x - e^(q*x) ) satisfies dA / dx = (A + 1) * (A + q). - Michael Somos, Mar 17 2011
For a column listing, n-th term: T(c, n) = c^(n+c-1) + Sum_{i=1..c-1} (-1)^i/i!*(c-i)^(n+c-1)*Product_{j=1..i} (n+c+1-j). - Randall L Rathbun, Jan 23 2002
From John Robertson (jpr2718(AT)aol.com), Sep 02 2002: (Start)
Four characterizations of Eulerian numbers T(i, n):
1. T(0, n)=1 for n>=1, T(i, 1)=0 for i>=1, T(i, n) = (n-i)T(i-1, n-1) + (i+1)T(i, n-1).
2. T(i, n) = Sum_{j=0..i} (-1)^j*binomial(n+1,j)*(i-j+1)^n for n>=1, i>=0.
3. Let C_n be the unit cube in R^n with vertices (e_1, e_2, ..., e_n) where each e_i is 0 or 1 and all 2^n combinations are used. Then T(i, n)/n! is the volume of C_n between the hyperplanes x_1 + x_2 + ... + x_n = i and x_1 + x_2 + ... + x_n = i+1. Hence T(i, n)/n! is the probability that i <= X_1 + X_2 + ... + X_n < i+1 where the X_j are independent uniform [0, 1] distributions. - See Ehrenborg & Readdy reference.
4. Let f(i, n) = T(i, n)/n!. The f(i, n) are the unique coefficients so that (1/(r-1)^(n+1)) Sum_{i=0..n-1} f(i, n) r^{i+1} = Sum_{j>=0} (j^n)/(r^j) whenever n>=1 and abs(r)>1. (End)
O.g.f. for n-th row: (1-x)^(n+1)*polylog(-n, x)/x. - Vladeta Jovovic, Sep 02 2002
Triangle T(n, k), n>0 and k>0, read by rows; given by [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] (positive integers interspersed with 0's) where DELTA is Deléham's operator defined in A084938.
Sum_{k=1..n} T(n, k)*2^k = A000629(n). - Philippe Deléham, Jun 05 2004
From Tom Copeland, Oct 10 2007: (Start)
Bell_n(x) = Sum_{j=0..n} S2(n,j) * x^j = Sum_{j=0..n} E(n,j) * Lag(n,-x, j-n) = Sum_{j=0..n} (E(n,j)/n!) * (n!*Lag(n,-x, j-n)) = Sum_{j=0..n} E(n,j) * binomial(Bell.(x)+j, n) umbrally where Bell_n(x) are the Bell / Touchard / exponential polynomials; S2(n,j), the Stirling numbers of the second kind; E(n,j), the Eulerian numbers; and Lag(n,x,m), the associated Laguerre polynomials of order m.
For x = 0, the equation gives Sum_{j=0..n} E(n,j) * binomial(j,n) = 1 for n=0 and 0 for all other n. By substituting the umbral compositional inverse of the Bell polynomials, the lower factorial n!*binomial(y,n), for x in the equation, the Worpitzky identity is obtained; y^n = Sum_{j=0..n} E(n,j) * binomial(y+j,n).
Note that E(n,j)/n! = E(n,j)/(Sum_{k=0..n} E(n,k)). Also (n!*Lag(n, -1, j-n)) is A086885 with a simple combinatorial interpretation in terms of seating arrangements, giving a combinatorial interpretation to the equation for x=1; n!*Bell_n(1) = n!*Sum_{j=0..n} S2(n,j) = Sum_{j=0..n} E(n,j) * (n!*Lag(n, -1, j-n)).
(Appended Sep 16 2020) For connections to the Bernoulli numbers, extensions, proofs, and a clear presentation of the number arrays involved in the identities above, see my post Reciprocity and Umbral Witchcraft. (End)
From the relations between the h- and f-polynomials of permutohedra and reciprocals of e.g.f.s described in A049019: (t-1)((t-1)d/dx)^n 1/(t-exp(x)) evaluated at x=0 gives the n-th Eulerian row polynomial in t and the n-th row polynomial in (t-1) of A019538 and A090582. From the Comtet and Copeland references in A139605: ((t+exp(x)-1)d/dx)^(n+1) x gives pairs of the Eulerian polynomials in t as the coefficients of x^0 and x^1 in its Taylor series expansion in x. - Tom Copeland, Oct 05 2008
G.f: 1/(1-x/(1-x*y/1-2*x/(1-2*x*y/(1-3*x/(1-3*x*y/(1-... (continued fraction). - Paul Barry, Mar 24 2010
If n is odd prime, then the following consecutive 2*n+1 terms are 1 modulo n: a((n-1)*(n-2)/2+i), i=0..2*n. This chain of terms is maximal in the sense that neither the previous term nor the following one are 1 modulo n. - _Vladimir Shevelev, Jul 01 2011
From Peter Bala, Sep 29 2011: (Start)
For k = 0,1,2,... put G(k,x,t) := x -(1+2^k*t)*x^2/2 +(1+2^k*t+3^k*t^2)*x^3/3-(1+2^k*t+3^k*t^2+4^k*t^3)*x^4/4+.... Then the series reversion of G(k,x,t) with respect to x gives an e.g.f. for the present table when k = 0 and for A008517 when k = 1.
The e.g.f. B(x,t) := compositional inverse with respect to x of G(0,x,t) = (exp(x)-exp(x*t))/(exp(x*t)-t*exp(x)) = x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... satisfies the autonomous differential equation dB/dx = (1+B)*(1+t*B) = 1 + (1+t)*B + t*B^2.
Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the Eulerian polynomials: A(n,t) counts plane increasing trees on n vertices where each vertex has outdegree <= 2, the vertices of outdegree 1 come in 1+t colors and the vertices of outdegree 2 come in t colors. An example is given below. Cf. A008517. Applying [Dominici, Theorem 4.1] gives the following method for calculating the Eulerian polynomials: Let f(x,t) = (1+x)*(1+t*x) and let D be the operator f(x,t)*d/dx. Then A(n+1,t) = D^n(f(x,t)) evaluated at x = 0.
(End)
With e.g.f. A(x,t) = G[x,(t-1)]-1 in Copeland's 2008 comment, the compositional inverse is Ainv(x,t) = log(t-(t-1)/(1+x))/(t-1). - Tom Copeland, Oct 11 2011
T(2*n+1,n+1) = (2*n+2)*T(2*n,n). (E.g., 66 = 6*11, 2416 = 8*302, ...) - Gary Detlefs, Nov 11 2011
E.g.f.: (1-y) / (1 - y*exp( (1-y)*x )). - Geoffrey Critzer, Nov 10 2012
From Peter Bala, Mar 12 2013: (Start)
Let {A(n,x)} n>=1 denote the sequence of Eulerian polynomials beginning [1, 1 + x, 1 + 4*x + x^2, ...]. Given two complex numbers a and b, the polynomial sequence defined by R(n,x) := (x+b)^n*A(n+1,(x+a)/(x+b)), n >= 0, satisfies the recurrence equation R(n+1,x) = d/dx((x+a)*(x+b)*R(n,x)). These polynomials give the row generating polynomials for several triangles in the database including A019538 (a = 0, b = 1), A156992 (a = 1, b = 1), A185421 (a = (1+i)/2, b = (1-i)/2), A185423 (a = exp(i*Pi/3), b = exp(-i*Pi/3)) and A185896 (a = i, b = -i).
(End)
E.g.f.: 1 + x/(T(0) - x*y), where T(k) = 1 + x*(y-1)/(1 + (k+1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2013
From Tom Copeland, Sep 18 2014: (Start)
A) Bivariate e.g.f. A(x,a,b)= (e^(ax)-e^(bx))/(a*e^(bx)-b*e^(ax)) = x + (a+b)*x^2/2! + (a^2+4ab+b^2)*x^3/3! + (a^3+11a^2b+11ab^2+b^3)x^4/4! + ...
B) B(x,a,b)= log((1+ax)/(1+bx))/(a-b) = x - (a+b)x^2/2 + (a^2+ab+b^2)x^3/3 - (a^3+a^2b+ab^2+b^3)x^4/4 + ... = log(1+u.*x), with (u.)^n = u_n = h_(n-1)(a,b) a complete homogeneous polynomial, is the compositional inverse of A(x,a,b) in x (see Drake, p. 56).
C) A(x) satisfies dA/dx = (1+a*A)(1+b*A) and can be written in terms of a Weierstrass elliptic function (see Buchstaber & Bunkova).
D) The bivariate Eulerian row polynomials are generated by the iterated derivative ((1+ax)(1+bx)d/dx)^n x evaluated at x=0 (see A145271).
E) A(x,a,b)= -(e^(-ax)-e^(-bx))/(a*e^(-ax)-b*e^(-bx)), A(x,-1,-1) = x/(1+x), and B(x,-1,-1) = x/(1-x).
F) FGL(x,y) = A(B(x,a,b) + B(y,a,b),a,b) = (x+y+(a+b)xy)/(1-ab*xy) is called the hyperbolic formal group law and related to a generalized cohomology theory by Lenart and Zainoulline. (End)
For x > 1, the n-th Eulerian polynomial A(n,x) = (x - 1)^n * log(x) * Integral_{u>=0} (ceiling(u))^n * x^(-u) du. - Peter Bala, Feb 06 2015
Sum_{j>=0} j^n/e^j, for n>=0, equals Sum_{k=1..n} T(n,k)e^k/(e-1)^(n+1), a rational function in the variable "e" which evaluates, approximately, to n! when e = A001113 = 2.71828... - Richard R. Forberg, Feb 15 2015
For a fixed k, T(n,k) ~ k^n, proved by induction. - Ran Pan, Oct 12 2015
From A145271, multiply the n-th diagonal (with n=0 the main diagonal) of the lower triangular Pascal matrix by g_n = (d/dx)^n (1+a*x)*(1+b*x) evaluated at x= 0, i.e., g_0 = 1, g_1 = (a+b), g_2 = 2ab, and g_n = 0 otherwise, to obtain the tridiagonal matrix VP with VP(n,k) = binomial(n,k) g_(n-k). Then the m-th bivariate row polynomial of this entry is P(m,a,b) = (1, 0, 0, 0, ...) [VP * S]^(m-1) (1, a+b, 2ab, 0, ...)^T, where S is the shift matrix A129185, representing differentiation in the divided powers basis x^n/n!. Also, P(m,a,b) = (1, 0, 0, 0, ...) [VP * S]^m (0, 1, 0, ...)^T. - Tom Copeland, Aug 02 2016
Cumulatively summing a row generates the n starting terms of the n-th differences of the n-th powers. Applying the finite difference method to x^n, these terms correspond to those before constant n! in the lowest difference row. E.g., T(4,k) is summed as 0+1=1, 1+11=12, 12+11=23, 23+1=4!. See A101101, A101104, A101100, A179457. - Andy Nicol, May 25 2024

Extensions

Thanks to Michael Somos for additional comments.
Further comments from Christian G. Bower, May 12 2000

A000522 Total number of ordered k-tuples (k=0..n) of distinct elements from an n-element set: a(n) = Sum_{k=0..n} n!/k!.

Original entry on oeis.org

1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410, 9864101, 108505112, 1302061345, 16926797486, 236975164805, 3554627472076, 56874039553217, 966858672404690, 17403456103284421, 330665665962404000, 6613313319248080001, 138879579704209680022, 3055350753492612960485, 70273067330330098091156
Offset: 0

Views

Author

Keywords

Comments

Total number of permutations of all subsets of an n-set.
Also the number of one-to-one sequences that can be formed from n distinct objects.
Old name "Total number of permutations of a set with n elements", or the same with the word "arrangements", both sound too much like A000142.
Related to number of operations of addition and multiplication to evaluate a determinant of order n by cofactor expansion - see A026243.
a(n) is also the number of paths (without loops) in the complete graph on n+2 vertices starting at one vertex v1 and ending at another v2. Example: when n=2 there are 5 paths in the complete graph with 4 vertices starting at the vertex 1 and ending at the vertex 2: (12),(132),(142),(1342),(1432) so a(2) = 5. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001; comment corrected by Jonathan Coxhead, Mar 21 2003
Also row sums of Table A008279, which can be generated by taking the derivatives of x^k. For example, for y = 1*x^3, y' = 3x^2, y" = 6x, y'''= 6 so a(4) = 1 + 3 + 6 + 6 = 16. - Alford Arnold, Dec 15 1999
a(n) is the permanent of the n X n matrix with 2s on the diagonal and 1s elsewhere. - Yuval Dekel, Nov 01 2003
(A000166 + this_sequence)/2 = A009179, (A000166 - this_sequence)/2 = A009628.
Stirling transform of A006252(n-1) = [1,1,1,2,4,14,38,...] is a(n-1) = [1,2,5,16,65,...]. - Michael Somos, Mar 04 2004
Number of {12,12*,21*}- and {12,12*,2*1}-avoiding signed permutations in the hyperoctahedral group.
a(n) = b such that Integral_{x=0..1} x^n*exp(-x) dx = a-b*exp(-1). - Sébastien Dumortier, Mar 05 2005
a(n) is the number of permutations on [n+1] whose left-to-right record lows all occur at the start. Example: a(2) counts all permutations on [3] except 231 (the last entry is a record low but its predecessor is not). - David Callan, Jul 20 2005
a(n) is the number of permutations on [n+1] that avoid the (scattered) pattern 1-2-3|. The vertical bar means the "3" must occur at the end of the permutation. For example, 21354 is not counted by a(4): 234 is an offending subpermutation. - David Callan, Nov 02 2005
Number of deco polyominoes of height n+1 having no reentrant corners along the lower contour (i.e., no vertical step that is followed by a horizontal step). In other words, a(n)=A121579(n+1,0). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(1)=2 because the only deco polyominoes of height 2 are the vertical and horizontal dominoes, having no reentrant corners along their lower contours. - Emeric Deutsch, Aug 16 2006
Unreduced numerators of partial sums of the Taylor series for e. - Jonathan Sondow, Aug 18 2006
a(n) is the number of permutations on [n+1] (written in one-line notation) for which the subsequence beginning at 1 is increasing. Example: a(2)=5 counts 123, 213, 231, 312, 321. - David Callan, Oct 06 2006
a(n) is the number of permutations (written in one-line notation) on the set [n + k], k >= 1, for which the subsequence beginning at 1,2,...,k is increasing. Example: n = 2, k = 2. a(2) = 5 counts 1234, 3124, 3412, 4123, 4312. - Peter Bala, Jul 29 2014
a(n) and (1,-2,3,-4,5,-6,7,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Nov 01 2007
Consider the subsets of the set {1,2,3,...,n} formed by the first n integers. E.g., for n = 3 we have {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}. Let the variable sbst denote a subset. For each subset sbst we determine its number of parts, that is nprts(sbst). The sum over all possible subsets is written as Sum_{sbst=subsets}. Then a(n) = Sum_{sbst=subsets} nprts(sbst)!. E.g., for n = 3 we have 1!+1!+1!+1!+2!+2!+2!+3!=16. - Thomas Wieder, Jun 17 2006
Equals row sums of triangle A158359(unsigned). - Gary W. Adamson, Mar 17 2009
Equals eigensequence of triangle A158821. - Gary W. Adamson, Mar 30 2009
For positive n, equals 1/BarnesG(n+1) times the determinant of the n X n matrix whose (i,j)-coefficient is the (i+j)th Bell number. - John M. Campbell, Oct 03 2011
a(n) is the number of n X n binary matrices with i) at most one 1 in each row and column and ii) the subset of rows that contain a 1 must also be the columns that contain a 1. Cf. A002720 where restriction ii is removed. - Geoffrey Critzer, Dec 20 2011
Number of restricted growth strings (RGS) [d(1),d(2),...,d(n)] such that d(k) <= k and d(k) <= 1 + (number of nonzero digits in prefix). The positions of nonzero digits determine the subset, and their values (decreased by 1) are the (left) inversion table (a rising factorial number) for the permutation, see example. - Joerg Arndt, Dec 09 2012
Number of a restricted growth strings (RGS) [d(0), d(1), d(2), ..., d(n)] where d(k) >= 0 and d(k) <= 1 + chg([d(0), d(1), d(2), ..., d(k-1)]) and chg(.) gives the number of changes of its argument. Replacing the function chg(.) by a function asc(.) that counts the ascents in the prefix gives A022493 (ascent sequences). - Joerg Arndt, May 10 2013
The sequence t(n) = number of i <= n such that floor(e*i!) is a square is mentioned in the abstract of Luca & Shparlinski. The values are t(n) = 0 for 0 <= n <= 2 and t(n) = 1 for at least 3 <= n <= 300. - R. J. Mathar, Jan 16 2014
a(n) = p(n,1) = q(n,1), where p and q are polynomials defined at A248664 and A248669. - Clark Kimberling, Oct 11 2014
a(n) is the number of ways at most n people can queue up at a (slow) ticket counter when one or more of the people may choose not to queue up. Note that there are C(n,k) sets of k people who quene up and k! ways to queue up. Since k can run from 0 to n, a(n) = Sum_{k=0..n} n!/(n-k)! = Sum_{k=0..n} n!/k!. For example, if n=3 and the people are A(dam), B(eth), and C(arl), a(3)=16 since there are 16 possible lineups: ABC, ACB, BAC, BCA, CAB, CBA, AB, BA, AC, CA, BC, CB, A, B, C, and empty queue. - Dennis P. Walsh, Oct 02 2015
As the row sums of A008279, Motzkin uses the abbreviated notation $n_<^\Sigma$ for a(n).
The piecewise polynomial function f defined by f(x) = a(n)*x^n/n! on each interval [ 1-1/a(n), 1-1/a(n+1) ) is continuous on [0,1) and lim_{x->1} f(x) = e. - Luc Rousseau, Oct 15 2019
a(n) is composite for 3 <= n <= 2015, but a(2016) is prime (or at least a strong pseudoprime): see Johansson link. - Robert Israel, Jul 27 2020 [a(2016) is prime, ECPP certificate generated with CM 0.4.3 and checked by factordb. - Jason H Parker, Jun 15 2025]
In general, sequences of the form a(0)=a, a(n) = n*a(n-1) + k, n>0, will have a closed form of n!*a + floor(n!*(e-1))*k. - Gary Detlefs, Oct 26 2020
From Peter Bala, Apr 03 2022: (Start)
a(2*n) is odd and a(2*n+1) is even. More generally, a(n+k) == a(n) (mod k) for all n and k. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with the exact period dividing k. Various divisibility properties of the sequence follow from this; for example, a(5*n+2) == a(5*n+4) == 0 (mod 5), a(25*n+7) == a(25*n+19) == 0 (mod 25) and a(13*n+4) == a(13*n+10)== a(13*n+12) == 0 (mod 13). (End)
Number of possible ranking options on a typical ranked choice voting ballot with n candidates (allowing undervotes). - P. Christopher Staecker, May 05 2024
From Thomas Scheuerle, Dec 28 2024: (Start)
Number of decorated permutations of size n.
Number of Le-diagrams with bounding box semiperimeter n, for n > 0.
By counting over all k = 1..n and n > 0, the number of positroid cells for the totally nonnegative real Grassmannian Gr(k, n), equivalently the number of Grassmann necklaces of type (k, n). (End)

Examples

			G.f. = 1 + 2*x + 5*x^2 + 16*x^3 + 65*x^4 + 326*x^5 + 1957*x^6 + 13700*x^7 + ...
With two objects we can form 5 sequences: (), (a), (b), (a,b), (b,a), so a(2) = 5.
From _Joerg Arndt_, Dec 09 2012: (Start)
The 16 arrangements of the 3-set and their RGS (dots denote zeros) are
  [ #]       RGS        perm. of subset
  [ 1]    [ . . . ]      [  ]
  [ 2]    [ . . 1 ]      [ 3 ]
  [ 3]    [ . 1 . ]      [ 2 ]
  [ 4]    [ . 1 1 ]      [ 2 3 ]
  [ 5]    [ . 1 2 ]      [ 3 2 ]
  [ 6]    [ 1 . . ]      [ 1 ]
  [ 7]    [ 1 . 1 ]      [ 1 3 ]
  [ 8]    [ 1 . 2 ]      [ 3 1 ]
  [ 9]    [ 1 1 . ]      [ 1 2 ]
  [10]    [ 1 1 1 ]      [ 1 2 3 ]
  [11]    [ 1 1 2 ]      [ 1 3 2 ]
  [12]    [ 1 1 3 ]      [ 2 3 1 ]
  [13]    [ 1 2 . ]      [ 2 1 ]
  [14]    [ 1 2 1 ]      [ 2 1 3 ]
  [15]    [ 1 2 2 ]      [ 3 1 2 ]
  [16]    [ 1 2 3 ]      [ 3 2 1 ]
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 75, Problem 9.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 65, p. 23, Ellipses, Paris 2008.
  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 16.
  • D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Average of n-th row of triangle in A068424 [Corrected by N. J. A. Sloane, Feb 29 2024].
Row sums of A008279 and A094816.
First differences give A001339. Second differences give A001340.
Partial sums are in A001338, A002104.
A row of the array in A144502.
See also A370973, Nearest integer to e*n!.

Programs

  • Haskell
    import Data.List (subsequences, permutations)
    a000522 = length . choices . enumFromTo 1 where
    choices = concat . map permutations . subsequences
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
    
  • Magma
    [1] cat [n eq 1 select (n+1) else n*Self(n-1)+1: n in [1..25]]; // Vincenzo Librandi, Feb 15 2015
    
  • Maple
    a(n):= exp(1)*int(x^n*exp(-x)*Heaviside(x-1), x=0..infinity); # Karol A. Penson, Oct 01 2001
    A000522 := n->add(n!/k!,k=0..n);
    G(x):=exp(x)/(1-x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20);
    # Zerinvary Lajos, Apr 03 2009
    G:=exp(z)/(1-z): Gser:=series(G,z=0,21):
    for n from 0 to 20 do a(n):=n!*coeff(Gser,z,n): end do
    # Paul Weisenhorn, May 30 2010
    k := 1; series(hypergeom([1,k],[],x/(1-x))/(1-x), x=0, 20); # Mark van Hoeij, Nov 07 2011
    # one more Maple program:
    a:= proc(n) option remember;
          `if`(n<0, 0, 1+n*a(n-1))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 13 2019
    seq(simplify(KummerU(-n, -n, 1)), n = 0..23); # Peter Luschny, May 10 2022
  • Mathematica
    Table[FunctionExpand[Gamma[n + 1, 1]*E], {n, 0, 24}]
    nn = 20; Accumulate[Table[1/k!, {k, 0, nn}]] Range[0, nn]! (* Jan Mangaldan, Apr 21 2013 *)
    FoldList[#1*#2 + #2 &, 0, Range@ 23] + 1 (* or *)
    f[n_] := Floor[E*n!]; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Feb 13 2015 *)
    RecurrenceTable[{a[n + 1] == (n + 1) a[n] + 1, a[0] == 1}, a, {n, 0, 12}] (* Emanuele Munarini, Apr 27 2017 *)
    nxt[{n_,a_}]:={n+1,a(n+1)+1}; NestList[nxt,{0,1},30][[All,2]] (* Harvey P. Dale, Jan 29 2023 *)
  • Maxima
    a(n) := if n=0 then 1 else n*a(n-1)+1; makelist(a(n),n,0,12); /* Emanuele Munarini, Apr 27 2017 */
  • PARI
    {a(n) = local(A); if( n<0, 0, A = vector(n+1); A[1]=1; for(k=1, n, A[k+1] = k*A[k] + 1); A[n+1])}; /* Michael Somos, Jul 01 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x +x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x)^2+x^2*deriv(A)/(1-x)); polcoeff(A, n) \\ Paul D. Hanna, Sep 03 2008
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,(m+2)^m*x^m/(1+(m+1)*X)^(m+1)),n)} /* Paul D. Hanna */
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*k!); \\ Joerg Arndt, Dec 14 2014
    
  • Sage
    # program adapted from Alois P. Heinz's Maple code in A022493
    @CachedFunction
    def b(n, i, t):
        if n <= 1:
            return 1
        return sum(b(n - 1, j, t + (j == i)) for j in range(t + 2))
    def a(n):
        return b(n, 0, 0)
    v000522 = [a(n) for n in range(33)]
    print(v000522)
    # Joerg Arndt, May 11 2013
    

Formula

a(n) = n*a(n-1) + 1, a(0) = 1.
a(n) = A007526(n-1) + 1.
a(n) = A061354(n)*A093101(n).
a(n) = n! * Sum_{k=0..n} 1/k! = n! * (e - Sum_{k>=n+1} 1/k!). - Michael Somos, Mar 26 1999
a(0) = 1; for n > 0, a(n) = floor(e*n!).
E.g.f.: exp(x)/(1-x).
a(n) = 1 + Sum_{n>=k>=j>=0} (k-j+1)*k!/j! = a(n-1) + A001339(n-1) = A007526(n) + 1. Binomial transformation of n!, i.e., A000142. - Henry Bottomley, Jun 04 2001
a(n) = floor(2/(n+1))*A009578(n+1)-1. - Emeric Deutsch, Oct 24 2001
Integral representation as n-th moment of a nonnegative function on a positive half-axis: a(n) = e*Integral_{x>=0} x^n*e^(-x)*Heaviside(x-1) dx. - Karol A. Penson, Oct 01 2001
Formula, in Mathematica notation: Special values of Laguerre polynomials, a(n)=(-1)^n*n!*LaguerreL[n, -1-n, 1], n=1, 2, ... . This relation cannot be checked by Maple, as it appears that Maple does not incorporate Laguerre polynomials with second index equal to negative integers. It does check with Mathematica. - Karol A. Penson and Pawel Blasiak ( blasiak(AT)lptl.jussieu.fr), Feb 13 2004
G.f.: Sum_{k>=0} k!*x^k/(1-x)^(k+1). a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*k^(n-k)*(k+1)^k. - Vladeta Jovovic, Aug 18 2002
a(n) = Sum_{k=0..n} A008290(n, k)*2^k. - Philippe Deléham, Dec 12 2003
a(n) = Sum_{k=0..n} A046716(n, k). - Philippe Deléham, Jun 12 2004
a(n) = e*Gamma(n+1,1) where Gamma(z,t) = Integral_{x>=t} e^(-x)*x^(z-1) dx is incomplete gamma function. - Michael Somos, Jul 01 2004
a(n) = Sum_{k=0..n} P(n, k). - Ross La Haye, Aug 28 2005
Given g.f. A(x), then g.f. A059115 = A(x/(1-x)). - Michael Somos, Aug 03 2006
a(n) = 1 + n + n*(n-1) + n*(n-1)*(n-2) + ... + n!. - Jonathan Sondow, Aug 18 2006
a(n) = Sum_{k=0..n} binomial(n,k) * k!; interpretation: for all k-subsets (sum), choose a subset (binomial(n,k)), and permutation of subset (k!). - Joerg Arndt, Dec 09 2012
a(n) = Integral_{x>=0} (x+1)^n*e^(-x) dx. - Gerald McGarvey, Oct 19 2006
a(n) = Sum_{k=0..n} A094816(n, k), n>=0 (row sums of Poisson-Charlier coefficient matrix). - N. J. A. Sloane, Nov 10 2007
From Tom Copeland, Nov 01 2007, Dec 10 2007: (Start)
Act on 1/(1-x) with 1/(1-xDx) = Sum_{j>=0} (xDx)^j = Sum_{j>=0} x^j*D^j*x^j = Sum_{j>=0} j!*x^j*L(j,-:xD:,0) where Lag(n,x,0) are the Laguerre polynomials of order 0, D the derivative w.r.t. x and (:xD:)^j = x^j*D^j. Truncating the operator series at the j = n term gives an o.g.f. for a(0) through a(n) consistent with Jovovic's.
These results and those of Penson and Blasiak, Arnold, Bottomley and Deleham are related by the operator A094587 (the reverse of A008279), which is the umbral equivalent of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j)*j!*x^(n-j) = Sum_{j=0..n} (n!/j!)*x^j. Umbral substitution of b(.) for x and then letting b(n)=1 for all n connects the results. See A132013 (the inverse of A094587) for a connection between these operations and 1/(1-xDx).
(End)
From Peter Bala, Jul 15 2008: (Start)
a(n) = n!*e - 1/(n + 1/(n+1 + 2/(n+2 + 3/(n+3 + ...)))).
Asymptotic result (Ramanujan): n!*e - a(n) ~ 1/n - 1/n^3 + 1/n^4 + 2/n^5 - 9/n^6 + ..., where the sequence [1,0,-1,1,2,-9,...] = [(-1)^k*A000587(k)], for k>=1.
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). For fixed k, define the derived sequence a_k(n) = (a(n+k)-a(k))/n, n = 1,2,3,... . Then a_k(n) is also a difference divisibility sequence.
For example, the derived sequence a_0(n) is just a(n-1). The set of integer sequences satisfying the difference divisibility property forms a ring with term-wise operations of addition and multiplication.
Recurrence relations: a(0) = 1, a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, for n >= 1. a(0) = 1, a(1) = 2, D-finite with recurrence: a(n) = (n+1)*a(n-1) - (n-1)*a(n-2) for n >= 2. The sequence b(n) := n! satisfies the latter recurrence with the initial conditions b(0) = 1, b(1) = 1. This leads to the finite continued fraction expansion a(n)/n! = 1/(1-1/(2-1/(3-2/(4-...-(n-1)/(n+1))))), n >= 2.
Limit_{n->oo} a(n)/n! = e = 1/(1-1/(2-1/(3-2/(4-...-n/((n+2)-...))))). This is the particular case m = 0 of the general result m!/e - d_m = (-1)^(m+1) *(1/(m+2 -1/(m+3 -2/(m+4 -3/(m+5 -...))))), where d_m denotes the m-th derangement number A000166(m).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A001339 (r=1), A082030 (r=2), A095000 (r=3) and A095177 (r=4).
For the corresponding results for the constants log(2), zeta(2) and zeta(3) refer to A142992, A108625 and A143007 respectively.
(End)
G.f. satisfies: A(x) = 1/(1-x)^2 + x^2*A'(x)/(1-x). - Paul D. Hanna, Sep 03 2008
From Paul Barry, Nov 27 2009: (Start)
G.f.: 1/(1-2*x-x^2/(1-4*x-4*x^2/(1-6*x-9*x^2/(1-8*x-16*x^2/(1-10*x-25*x^2/(1-... (continued fraction);
G.f.: 1/(1-x-x/(1-x/(1-x-2*x/(1-2*x/(1-x-3*x/(1-3*x/(1-x-4*x/(1-4*x/(1-x-5*x/(1-5*x/(1-... (continued fraction).
(End)
O.g.f.: Sum_{n>=0} (n+2)^n*x^n/(1 + (n+1)*x)^(n+1). - Paul D. Hanna, Sep 19 2011
G.f. hypergeom([1,k],[],x/(1-x))/(1-x), for k=1,2,...,9 is the generating function for A000522, A001339, A082030, A095000, A095177, A096307, A096341, A095722, and A095740. - Mark van Hoeij, Nov 07 2011
G.f.: 1/U(0) where U(k) = 1 - x - x*(k+1)/(1 - x*(k+1)/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2012
E.g.f.: 1/U(0) where U(k) = 1 - x/(1 - 1/(1 + (k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 16 2012
G.f.: 1/(1-x)/Q(0), where Q(k) = 1 - x/(1-x)*(k+1)/(1 - x/(1-x)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
G.f.: 2/(1-x)/G(0), where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+3) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: (B(x)+ 1)/(2-2*x) = Q(0)/(2-2*x), where B(x) be g.f. A006183, Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(k+1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
E.g.f.: e^x/(1-x) = (1 - 12*x/(Q(0) + 6*x - 3*x^2))/(1-x), where Q(k) = 2*(4*k+1)*(32*k^2 + 16*k + x^2 - 6) - x^4*(4*k-1)*(4*k+7)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
G.f.: conjecture: T(0)/(1-2*x), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
0 = a(n)*(+a(n+1) - 3*a(n+2) + a(n+3)) + a(n+1)*(+a(n+1) - a(n+3)) + a(n+2)*(+a(n+2)) for all n>=0. - Michael Somos, Jul 04 2014
From Peter Bala, Jul 29 2014: (Start)
a(n) = F(n), where the function F(x) := Integral_{0..infinity} e^(-u)*(1 + u)^x du smoothly interpolates this sequence to all real values of x. Note that F(-1) = G and for n = 2,3,... we have F(-n) = (-1)^n/(n-1)! *( A058006(n-2) - G ), where G = 0.5963473623... denotes Gompertz's constant - see A073003.
a(n) = n!*e - e*( Sum_{k >= 0} (-1)^k/((n + k + 1)*k!) ).
(End)
a(n) = hypergeometric_U(1, n+2, 1). - Peter Luschny, Nov 26 2014
a(n) ~ exp(1-n)*n^(n-1/2)*sqrt(2*Pi). - Vladimir Reshetnikov, Oct 27 2015
a(n) = A038155(n+2)/A000217(n+1). - Anton Zakharov, Sep 08 2016
a(n) = round(exp(1)*n!), n > 1 - Simon Plouffe, Jul 28 2020
a(n) = KummerU(-n, -n, 1). - Peter Luschny, May 10 2022
a(n) = (e/(2*Pi))*Integral_{x=-oo..oo} (n+1+i*x)!/(1+i*x) dx. - David Ulgenes, Apr 18 2023
Sum_{i=0..n} (-1)^(n-i) * binomial(n, i) * a(i) = n!. - Werner Schulte, Apr 03 2024

Extensions

Additional comments from Michael Somos

A002467 The game of Mousetrap with n cards (given n letters and n envelopes, how many ways are there to fill the envelopes so that at least one letter goes into its right envelope?).

Original entry on oeis.org

0, 1, 1, 4, 15, 76, 455, 3186, 25487, 229384, 2293839, 25232230, 302786759, 3936227868, 55107190151, 826607852266, 13225725636255, 224837335816336, 4047072044694047, 76894368849186894, 1537887376983737879, 32295634916658495460, 710503968166486900119
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations in the symmetric group S_n that have a fixed point, i.e., they are not derangements (A000166). - Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001
a(n+1)=p(n+1) where p(x) is the unique degree-n polynomial such that p(k)=k! for k=0,1,...,n. - Michael Somos, Oct 07 2003
The termwise sum of this sequence and A000166 gives the factorial numbers. - D. G. Rogers, Aug 26 2006, Jan 06 2008
a(n) is the number of deco polyominoes of height n and having in the last column an odd number of cells. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(2)=1 because the horizontal domino is the only deco polyomino of height 2 having an odd number of cells in the last column. - Emeric Deutsch, May 08 2008
Starting (1, 4, 15, 76, 455, ...) = eigensequence of triangle A127899 (unsigned). - Gary W. Adamson, Dec 29 2008
(n-1) | a(n), hence a(n) is never prime. - Jonathan Vos Post, Mar 25 2009
a(n) is the number of permutations of [n] that have at least one fixed point = number of positive terms in n-th row of the triangle in A170942, n > 0. - Reinhard Zumkeller, Mar 29 2012
Numerator of partial sum of alternating harmonic series, provided that the denominator is n!. - Richard Locke Peterson, May 11 2020
a(n) is the number of terms in the polynomial expansion of the determinant of a n X n matrix that contains at least one diagonal element. - Adam Wang, May 28 2025

Examples

			G.f. = x + x^2 + 4*x^3 + 15*x^4 + 76*x^5 + 455*x^6 + 3186*x^7 + 25487*x^8 + ...
		

References

  • R. K. Guy, Unsolved Problems Number Theory, E37.
  • R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A068106.
Column k=1 of A293211.
Column k=0 of A299789, A306234, and of A324362.

Programs

  • Maple
    a := proc(n) -add((-1)^i*binomial(n, i)*(n-i)!, i=1..n) end;
    a := n->-n!*add((-1)^k/k!, k=1..n): seq(a(n), n=0..20); # Zerinvary Lajos, May 25 2007
    a := n -> simplify(GAMMA(n+1) - GAMMA(n+1, -1)*exp(-1)):
    seq(a(n), n=0..20); # Peter Luschny, Feb 28 2017
  • Mathematica
    Denominator[k=1; NestList[1+1/(k++ #1)&,1,12]] (* Wouter Meeussen, Mar 24 2007 *)
    a[ n_] := If[ n < 0, 0, n! - Subfactorial[n]] (* Michael Somos, Jan 25 2014 *)
    a[ n_] := If[ n < 1, 0, n! - Round[ n! / E]] (* Michael Somos, Jan 25 2014 *)
    a[ n_] := If[ n < 0, 0, n! - (-1)^n HypergeometricPFQ[ {- n, 1}, {}, 1]](* Michael Somos, Jan 25 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (1 - Exp[ -x] ) / (1 - x), {x, 0, n}]] (* Michael Somos, Jan 25 2014 *)
    RecurrenceTable[{a[n] == (n - 1) ( a[n - 1] + a[n - 2]), a[0] == 0, a[1] == 1}, a[n], {n, 20}] (* Ray Chandler, Jul 30 2015 *)
  • PARI
    {a(n) = if( n<1, 0, n * a(n-1) - (-1)^n)} /* Michael Somos, Mar 24 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (1 - exp( -x + x * O(x^n))) / (1 - x), n))} /* Michael Somos, Mar 24 2003 */
    
  • PARI
    a(n) = if(n<1,0,subst(polinterpolate(vector(n,k,(k-1)!)),x,n+1))
    
  • PARI
    A002467(n) = if(n<1, 0, n*A002467(n-1)-(-1)^n); \\ Joerg Arndt, Apr 22 2013

Formula

a(n) = n! - A000166(n) = A000142(n) - A000166(n).
E.g.f.: (1 - exp(-x)) / (1 - x). - Michael Somos, Aug 11 1999
a(n) = (n-1)*(a(n-1) + a(n-2)), n > 1; a(1) = 1. - Michael Somos, Aug 11 1999
a(n) = n*a(n-1) - (-1)^n. - Michael Somos, Aug 11 1999
a(0) = 0, a(n) = floor(n!(e-1)/e + 1/2) for n > 0. - Michael Somos, Aug 11 1999
a(n) = - n! * Sum_{i=1..n} (-1)^i/i!. Limit_{n->infinity} a(n)/n! = 1 - 1/e. - Gerald McGarvey, Jun 08 2004
Inverse binomial transform of A002627. - Ross La Haye, Sep 21 2004
a(n) = (n-1)*(a(n-1) + a(n-2)), n > 1. - Gary Detlefs, Apr 11 2010
a(n) = n! - floor((n!+1)/e), n > 0. - Gary Detlefs, Apr 11 2010
For n > 0, a(n) = {(1-1/exp(1))*n!}, where {x} is the nearest integer. - Simon Plouffe, conjectured March 1993, added Feb 17 2011
0 = a(n) * (a(n+1) + a(n+2) - a(n+3)) + a(n+1) * (a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2) * (a(n+2)) if n >= 0. - Michael Somos, Jan 25 2014
a(n) = Gamma(n+1) - Gamma(n+1, -1)*exp(-1). - Peter Luschny, Feb 28 2017
a(n) = Sum_{k=0..n-1} A047920(n-1,k). - Alois P. Heinz, Sep 01 2021

A173333 Triangle read by rows: T(n, k) = n! / k!, 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 24, 12, 4, 1, 120, 60, 20, 5, 1, 720, 360, 120, 30, 6, 1, 5040, 2520, 840, 210, 42, 7, 1, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 1814400, 604800, 151200, 30240, 5040, 720, 90, 10, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 19 2010

Keywords

Comments

From Wolfdieter Lang, Jun 27 2012: (Start)
T(n-1,k), k=1,...,n-1, gives the number of representative necklaces with n beads (C_N symmetry) of n+1-k distinct colors, say c[1],c[2],...,c[n-k+1], corresponding to the color signature determined by the partition k,1^(n-k) of n. The representative necklaces have k beads of color c[1]. E.g., n=4, k=2: partition 2,1,1, color signature (parts as exponents) c[1]c[1]c[2]c[3], 3=T(3,2) necklaces (write j for color c[j]): cyclic(1123), cyclic(1132) and cyclic(1213). See A212359 for the numbers for general partitions or color signatures. (End)

Examples

			Triangle starts:
n\k      1       2      3      4     5    6   7  8  9 10 ...
1        1
2        2       1
3        6       3      1
4       24      12      4      1
5      120      60     20      5     1
6      720     360    120     30     6    1
7     5040    2520    840    210    42    7   1
8    40320   20160   6720   1680   336   56   8  1
9   362880  181440  60480  15120  3024  504  72  9  1
10 3628800 1814400 604800 151200 30240 5040 720 90 10  1
... - _Wolfdieter Lang_, Jun 27 2012
		

Crossrefs

Row sums give A002627.
Central terms give A006963:
T(2*n-1,n) = A006963(n+1).
T(2*n,n) = A001813(n).
T(2*n,n+1) = A001761(n).
1 < k <= n: T(n,k) = T(n,k-1) / k.
1 <= k <= n: T(n+1,k) = A119741(n,n-k+1).
1 <= k <= n: T(n+1,k+1) = A162995(n,k).
T(n,1) = A000142(n).
T(n,2) = A001710(n) for n>1.
T(n,3) = A001715(n) for n>2.
T(n,4) = A001720(n) for n>3.
T(n,5) = A001725(n) for n>4.
T(n,6) = A001730(n) for n>5.
T(n,7) = A049388(n-7) for n>6.
T(n,8) = A049389(n-8) for n>7.
T(n,9) = A049398(n-9) for n>8.
T(n,10) = A051431(n) for n>9.
T(n,n-7) = A159083(n+1) for n>7.
T(n,n-6) = A053625(n+1) for n>6.
T(n,n-5) = A052787(n) for n>5.
T(n,n-4) = A052762(n) for n>4.
T(n,n-3) = A007531(n) for n>3.
T(n,n-2) = A002378(n-1) for n>2.
T(n,n-1) = A000027(n) for n>1.
T(n,n) = A000012(n).

Programs

  • Haskell
    a173333 n k = a173333_tabl !! (n-1) !! (k-1)
    a173333_row n = a173333_tabl !! (n-1)
    a173333_tabl = map fst $ iterate f ([1], 2)
       where f (row, i) = (map (* i) row ++ [1], i + 1)
    -- Reinhard Zumkeller, Jul 04 2012
  • Mathematica
    Table[n!/k!, {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

Formula

E.g.f.: (exp(x*y) - 1)/(x*(1 - y)). - Olivier Gérard, Jul 07 2011
T(n,k) = A094587(n,k), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012

A046802 T(n, k) = Sum_{j=k..n} binomial(n, j)*E1(j, j-k), where E1 are the Eulerian numbers A173018. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 33, 15, 1, 1, 31, 131, 131, 31, 1, 1, 63, 473, 883, 473, 63, 1, 1, 127, 1611, 5111, 5111, 1611, 127, 1, 1, 255, 5281, 26799, 44929, 26799, 5281, 255, 1, 1, 511, 16867, 131275, 344551, 344551, 131275, 16867, 511, 1, 1, 1023, 52905
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of positroid cells of the totally nonnegative Grassmannian G+(k,n) (cf. Postnikov/Williams). It is the triangle of the h-vectors of the stellahedra. - Tom Copeland, Oct 10 2014
See A248727 for a simple transformation of the row polynomials of this entry that produces the umbral compositional inverses of the polynomials of A074909, related to the face polynomials of the simplices. - Tom Copeland, Jan 21 2015
From Tom Copeland, Jan 24 2015: (Start)
The reciprocal of this entry's e.g.f. is [t e^(-xt) - e^(-x)] / (t-1) = 1 - (1+t) x + (1+t+t^2) x^2/2! - (1+t+t^2+t^3) x^3/3! + ... = e^(q.(0;t)x), giving the base sequence (q.(0;t))^n = q_n(0;t) = (-1)^n [1-t^(n+1)] / (1-t) for the umbral compositional inverses (q.(0;t)+z)^n = q_n(z;t) of the Appell polynomials associated with this entry, p_n(z;t) below, i.e., q_n(p.(z;t)) = z^n = p_n(q.(z;t)), in umbral notation. The relations in A133314 then apply between the two sets of base polynomials. (Inserted missing index in a formula - Mar 03 2016.)
The associated o.g.f. for the umbral inverses is Og(x) = x / (1-x q.(0:t)) = x / [(1+x)(1+tx)] = x / [1+(1+t)x+tx^2]. Applying A134264 to h(x) = x / Og(x) = 1 + (1+t) x + t x^2 leads to an o.g.f. for the Narayana polynomials A001263 as the comp. inverse Oginv(x) = [1-(1+t)x-sqrt[1-2(1+t)x+((t-1)x)^2]] / (2xt). Note that Og(x) gives the signed h-polynomials of the simplices and that Oginv(x) gives the h-polynomials of the simplicial duals of the Stasheff polynomials, or type A associahedra. Contrast this with A248727 = A046802 * A007318, which has o.g.f.s related to the corresponding f-polynomials. (End)
The Appell polynomials p_n(x;t) in the formulas below specialize to the Swiss-knife polynomials of A119879 for t = -1, so the Springer numbers A001586 are given by 2^n p_n(1/2;-1). - Tom Copeland, Oct 14 2015
The row polynomials are the h-polynomials associated to the stellahedra, whose f-polynomials are the row polynomials of A248727. Cf. page 60 of the Buchstaber and Panov link. - Tom Copeland, Nov 08 2016
The row polynomials are the h-polynomials of the stellohedra, which enumerate partial permutations according to descents. Cf. Section 10.4 of the Postnikov-Reiner-Williams reference. - Lauren Williams, Jul 05 2022
From p. 60 of the Buchstaber and Panov link, S = P * C / T where S, P, C, and T are the bivariate e.g.f.s of the h vectors of the stellahedra, permutahedra, hypercubes, and (n-1)-simplices, respectively. - Tom Copeland, Jan 09 2017
The number of Le-diagrams of type (k, n) this means the diagram uses the bounding box size k x (n-k), equivalently the number of Grassmann necklaces of type (k, n) and also the number of decorated permutations with k anti-exceedances. - Thomas Scheuerle, Dec 29 2024

Examples

			The triangle T(n, k) begins:
n\k 0   1     2      3      4      5      6     7
0:  1
1:  1   1
2:  1   3     1
3:  1   7     7      1
4:  1  15    33     15      1
5:  1  31   131    131     31      1
6:  1  63   473    883    473     63      1
7:  1 127  1611   5111   5111   1611    127     1
... Reformatted. - _Wolfdieter Lang_, Feb 14 2015
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, Holland, 1974, page 245 [From Roger L. Bagula, Nov 21 2009]
  • D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.

Crossrefs

Programs

  • Maple
    T := (n, k) -> add(binomial(n, r)*combinat:-eulerian1(r, r-k), r = k .. n):
    for n from 0 to 8 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jun 27 2018
  • Mathematica
    t[, 1] = 1; t[n, n_] = 1; t[n_, 2] = 2^(n-1)-1;
    t[n_, k_] = Sum[((i-k+1)^i*(k-i)^(n-i-1) - (i-k+2)^i*(k-i-1)^(n-i-1))*Binomial[n-1, i], {i, 0, k-1}];
    T[n_, k_] := t[n+1, k+1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten
    (* Jean-François Alcover, Jan 22 2015, after Tom Copeland *)
    T[ n_, k_] := Coefficient[n! SeriesCoefficient[(1-x) Exp[t] / (1 - x Exp[(1-x) t]), {t, 0, n}] // Simplify, x, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Michael Somos, Jan 22 2015 *)

Formula

E.g.f.: (y-1)*exp(x*y)/(y-exp((y-1)*x)). - Vladeta Jovovic, Sep 20 2003
p(t,x) = (1 - x)*exp(t)/(1 - x*exp(t*(1 - x))). - Roger L. Bagula, Nov 21 2009
With offset=0, T(n,0)=1 otherwise T(n,k) = sum_{i=0..k-1} C(n,i)((i-k)^i*(k-i+1)^(n-i) - (i-k+1)^i*(k-i)^(n-i)) (cf. Williams). - Tom Copeland, Oct 10 2014
With offset 0, T = A007318 * A123125. Second column is A000225; 3rd, appears to be A066810. - Tom Copeland, Jan 23 2015
A raising operator (with D = d/dx) associated with this entry's row polynomials is R = x + t + (1-t) / [1-t e^{(1-t)D}] = x + t + 1 + t D + (t+t^2) D^2/2! + (t+4t^2+t^3) D^3/3! + ... , containing the e.g.f. for the Eulerian polynomials of A123125. Then R^n 1 = (p.(0;t)+x)^n = p_n(x;t) are the Appell polynomials with this entry's row polynomials p_n(0;t) as the base sequence. Examples of this formalism are given in A028246 and A248727. - Tom Copeland, Jan 24 2015
With offset 0, T = A007318*(padded A090582)*(inverse of A097805) = A007318*(padded A090582)*(padded A130595) = A007318*A123125 = A007318*(padded A090582)*A007318*A097808*A130595, where padded matrices are of the form of padded A007318, which is A097805. Inverses of padded matrices are just the padded versions of inverses of the unpadded matrices. This relates the face vectors, or f-vectors, and h-vectors of the permutahedra / permutohedra to those of the stellahedra / stellohedra. - Tom Copeland, Nov 13 2016
Umbrally, the row polynomials (offset 0) are r_n(x) = (1 + q.(x))^n, where (q.(x))^k = q_k(x) are the row polynomials of A123125. - Tom Copeland, Nov 16 2016
From the previous umbral statement, OP(x,d/dy) y^n = (y + q.(x))^n, where OP(x,y) = exp[y * q.(x)] = (1-x)/(1-x*exp((1-x)y)), the e.g.f. of A123125, so OP(x,d/dy) y^n evaluated at y = 1 is r_n(x), the n-th row polynomial of this entry, with offset 0. - Tom Copeland, Jun 25 2018
Consolidating some formulas in this entry and A248727, in umbral notation for concision, with all offsets 0: Let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of this entry (A046802, the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020
From Peter Luschny, Apr 30 2021: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A122045(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A007047(n).
Sum_{k=0..n} T(n, n-k) = A000522(n).
Sum_{k=0..n} T(n-k, k) = Sum_{k=0..n} (n - k)^k = A026898(n-1) for n >= 1.
Sum_{k=0..n} k*T(n, k) = A036919(n) = floor(n*n!*e/2).
(End)

Extensions

More terms from Vladeta Jovovic, Sep 20 2003
First formula corrected by Wolfdieter Lang, Feb 14 2015
Offset set to 0 and edited by Peter Luschny, Apr 30 2021
Showing 1-10 of 44 results. Next