cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A060413 In the '3x+1' problem, take the sequence of starting values which set new records for the "dropping time" (A060412); sequence gives associated dropping times.

Original entry on oeis.org

1, 4, 7, 59, 81, 105, 135, 164, 165, 173, 176, 183, 224, 246, 287, 292, 298, 308, 376, 395, 398, 433, 447, 547, 550, 606, 688, 712, 722, 728, 886, 902, 966, 990, 1005
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2001; b-file added Nov 27 2007

Keywords

Crossrefs

A060415 In the '3x+1' problem, take the sequence of starting values which set new records for the "dropping time" (A060412); sequence gives associated iterate where maximal value is reached in the trajectory with that start.

Original entry on oeis.org

0, 2, 3, 45, 48, 20, 78, 124, 95, 103, 62, 147, 186, 36, 168, 65, 60, 179, 41, 146, 254, 254, 319, 346, 423, 166, 297, 206, 223, 164, 659, 607, 840, 808, 512
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2001; b-file added Nov 27 2007

Keywords

Crossrefs

Extensions

Corrected by Don Reble, May 13 2006

A060414 In the '3x+1' problem, take the sequence of starting values which set new records for the "dropping time" (A060412); sequence gives associated maximal value reached in the trajectory with that start.

Original entry on oeis.org

2, 8, 26, 4616, 125252, 1242458, 20581856, 12324038948, 282667562, 282667562, 3611141594, 8904120362, 45119577824, 8077577336, 795853127168, 44621605808, 1848429310544, 3604523133626, 483308017730
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2001; b-file added Nov 27 2007

Keywords

A014682 The Collatz or 3x+1 function: a(n) = n/2 if n is even, otherwise (3n+1)/2.

Original entry on oeis.org

0, 2, 1, 5, 2, 8, 3, 11, 4, 14, 5, 17, 6, 20, 7, 23, 8, 26, 9, 29, 10, 32, 11, 35, 12, 38, 13, 41, 14, 44, 15, 47, 16, 50, 17, 53, 18, 56, 19, 59, 20, 62, 21, 65, 22, 68, 23, 71, 24, 74, 25, 77, 26, 80, 27, 83, 28, 86, 29, 89, 30, 92, 31, 95, 32, 98, 33, 101, 34, 104
Offset: 0

Views

Author

Keywords

Comments

This is the function usually denoted by T(n) in the literature on the 3x+1 problem. See A006370 for further references and links.
Intertwining of sequence A016789 '2,5,8,11,... ("add 3")' and the nonnegative integers.
a(n) = log_2(A076936(n)). - Amarnath Murthy, Oct 19 2002
The average value of a(0), ..., a(n-1) is A004526(n). - Amarnath Murthy, Oct 19 2002
Partial sums are A093353. - Paul Barry, Mar 31 2008
Absolute first differences are essentially in A014681 and A103889. - R. J. Mathar, Apr 05 2008
Only terms of A016789 occur twice, at positions given by sequences A005408 (odd numbers) and A016957 (6n+4): (1,4), (3,10), (5,16), (7,22), ... - Antti Karttunen, Jul 28 2017
a(n) represents the unique congruence class modulo 2n+1 that is represented an odd number of times in any 2n+1 consecutive oblong numbers (A002378). This property relates to Jim Singh's 2018 formula, as n^2 + n is a relevant oblong number. - Peter Munn, Jan 29 2022

Examples

			a(3) = -3*(-1) - 2*1 - 1*(-1) - 0*1 + 1*(-1) + 2*1 + 3*(-1) + 4*1 + 5*(-1) + 6*1 = 5. - _Bruno Berselli_, Dec 14 2015
		

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010.

Crossrefs

Programs

  • Haskell
    a014682 n = if r > 0 then div (3 * n + 1) 2 else n'
                where (n', r) = divMod n 2
    -- Reinhard Zumkeller, Oct 03 2014
    
  • Magma
    [IsOdd(n) select (3*n+1)/2 else n/2: n in [0..52]]; // Vincenzo Librandi, Sep 28 2018
  • Maple
    T:=proc(n) if n mod 2 = 0 then n/2 else (3*n+1)/2; fi; end; # N. J. A. Sloane, Jan 31 2011
    A076936 := proc(n) option remember ; local apr,ifr,me,i,a ; if n <=2 then n^2 ; else apr := mul(A076936(i),i=1..n-1) ; ifr := ifactors(apr)[2] ; me := -1 ; for i from 1 to nops(ifr) do me := max(me, op(2,op(i,ifr))) ; od ; me := me+ n-(me mod n) ; a := 1 ; for i from 1 to nops(ifr) do a := a*op(1,op(i,ifr))^(me-op(2,op(i,ifr))) ; od ; if a = A076936(n-1) then me := me+n ; a := 1 ; for i from 1 to nops(ifr) do a := a*op(1,op(i,ifr))^(me-op(2,op(i,ifr))) ; od ; fi ; RETURN(a) ; fi ; end: A014682 := proc(n) log[2](A076936(n)) ; end: for n from 1 to 85 do printf("%d, ",A014682(n)) ; od ; # R. J. Mathar, Mar 20 2007
  • Mathematica
    Collatz[n_?OddQ] := (3n + 1)/2; Collatz[n_?EvenQ] := n/2; Table[Collatz[n], {n, 0, 79}] (* Alonso del Arte, Apr 21 2011 *)
    LinearRecurrence[{0, 2, 0, -1}, {0, 2, 1, 5}, 70] (* Jean-François Alcover, Sep 23 2017 *)
    Table[If[OddQ[n], (3 n + 1) / 2, n / 2], {n, 0, 60}] (* Vincenzo Librandi, Sep 28 2018 *)
  • PARI
    a(n)=if(n%2,3*n+1,n)/2 \\ Charles R Greathouse IV, Sep 02 2015
    
  • PARI
    a(n)=if(n<2,2*n,(n^2-n-1)%(2*n+1)) \\ Jim Singh, Sep 28 2018
    
  • Python
    def a(n): return n//2 if n%2==0 else (3*n + 1)//2
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 29 2017
    

Formula

From Paul Barry, Mar 31 2008: (Start)
G.f.: x*(2 + x + x^2)/(1-x^2)^2.
a(n) = (4*n+1)/4 - (2*n+1)*(-1)^n/4. (End)
a(n) = -a(n-1) + a(n-2) + a(n-3) + 4. - John W. Layman
For n > 1 this is the image of n under the modified "3x+1" map (cf. A006370): n -> n/2 if n is even, n -> (3*n+1)/2 if n is odd. - Benoit Cloitre, May 12 2002
O.g.f.: x*(2+x+x^2)/((-1+x)^2*(1+x)^2). - R. J. Mathar, Apr 05 2008
a(n) = 5/4 + (1/2)*((-1)^n)*n + (3/4)*(-1)^n + n. - Alexander R. Povolotsky, Apr 05 2008
a(n) = Sum_{i=-n..2*n} i*(-1)^i. - Bruno Berselli, Dec 14 2015
a(n) = Sum_{k=0..n-1} Sum_{i=0..k} C(i,k) + (-1)^k. - Wesley Ivan Hurt, Sep 20 2017
a(n) = (n^2-n-1) mod (2*n+1) for n > 1. - Jim Singh, Sep 26 2018
The above formula can be rewritten to show a pattern: a(n) = (n*(n+1)) mod (n+(n+1)). - Peter Munn, Jan 29 2022
Binary: a(n) = (n shift left (n AND 1)) - (n shift right 1) = A109043(n) - A004526(n). - Rudi B. Stranden, Jun 15 2021
From Rudi B. Stranden, Mar 21 2022: (Start)
a(n) = A064455(n+1) - 1, relating the number ON cells in row n of cellular automaton rule 54.
a(n) = 2*n - A071045(n).
(End)
E.g.f.: (1 + x)*sinh(x)/2 + 3*x*cosh(x)/2 = ((4*x+1)*e^x + (2*x-1)*e^(-x))/4. - Rénald Simonetto, Oct 20 2022
a(n) = n*(n mod 2) + ceiling(n/2) = A193356(n) + A008619(n+1). - Jonathan Shadrach Gilbert, Mar 12 2023
a(n) = 2*a(n-2) - a(n-4) for n > 3. - Chai Wah Wu, Apr 17 2024

Extensions

Edited by N. J. A. Sloane, Apr 26 2008, at the suggestion of Artur Jasinski
Edited by N. J. A. Sloane, Jan 31 2011

A006884 In the '3x+1' problem, these values for the starting value set new records for highest point of trajectory before reaching 1.

Original entry on oeis.org

1, 2, 3, 7, 15, 27, 255, 447, 639, 703, 1819, 4255, 4591, 9663, 20895, 26623, 31911, 60975, 77671, 113383, 138367, 159487, 270271, 665215, 704511, 1042431, 1212415, 1441407, 1875711, 1988859, 2643183, 2684647, 3041127, 3873535, 4637979, 5656191
Offset: 1

Views

Author

Keywords

Comments

Both the 3x+1 steps and the halving steps are counted.
Where records occur in A025586: A006885(n) = A025586(a(n)) and A025586(m) < A006885(n) for m < a(n). - Reinhard Zumkeller, May 11 2013

References

  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 96.
  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A060409 gives associated "dropping times", A060410 the maximal values and A060411 the steps at which the maxima occur.

Programs

  • Haskell
    a006884 n = a006884_list !! (n-1)
    a006884_list = f 1 0 a025586_list where
       f i r (x:xs) = if x > r then i : f (i + 1) x xs else f (i + 1) r xs
    -- Reinhard Zumkeller, May 11 2013
    
  • Mathematica
    mcoll[n_]:=Max@@NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]; t={1,max=2}; Do[If[(y=mcoll[n])>max,max=y; AppendTo[t,n]],{n,3,705000,4}]; t (* Jayanta Basu, May 28 2013 *)
    DeleteDuplicates[Parallelize[Table[{n,Max[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]]},{n,57*10^5}]],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Apr 23 2023 *)
  • PARI
    A025586(n)=my(r=n); while(n>2, if(n%2, n=3*n+1; if(n>r, r=n)); n>>=1); r
    r=0; for(n=1,1e6, t=A025586(n); if(t>r, r=t; print1(n", "))) \\ Charles R Greathouse IV, May 25 2016

A074473 Dropping time for the 3x+1 problem: for n >= 2, number of iteration that first becomes smaller than the initial value if Collatz-function (A006370) is iterated starting at n; a(1)=1 by convention.

Original entry on oeis.org

1, 2, 7, 2, 4, 2, 12, 2, 4, 2, 9, 2, 4, 2, 12, 2, 4, 2, 7, 2, 4, 2, 9, 2, 4, 2, 97, 2, 4, 2, 92, 2, 4, 2, 7, 2, 4, 2, 14, 2, 4, 2, 9, 2, 4, 2, 89, 2, 4, 2, 7, 2, 4, 2, 9, 2, 4, 2, 12, 2, 4, 2, 89, 2, 4, 2, 7, 2, 4, 2, 84, 2, 4, 2, 9, 2, 4, 2, 14, 2, 4, 2, 7, 2, 4, 2, 9, 2, 4, 2, 74, 2, 4, 2, 14, 2, 4, 2, 7
Offset: 1

Views

Author

Labos Elemer, Sep 19 2002

Keywords

Comments

Here we call the starting value iteration number 1, although usually the count is started at 0, which would subtract 1 from the values for n >= 2 - see A060445, A102419.

Examples

			n=2k: then a(2k)=2 because the second iterate is k<n=2k, the first iterate below 2k; n=4k+1, k>1: the list = {4k+1, 12k+4, 6k+2, 3k+1, ...} i.e. the 4th term is always the first below initial value, so a(4k+1)=4;
n=15: the list={15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1} and 12th term is first sinks below iv=15, so a(15)=12; relatively larger values occur at n=4k+3.
n=3: the list is {3, 10, 5, 16, 8, 4, 2, 1, ..}, the 7th term is 2, which is the first smaller than 3, so a(3)=7.
		

Crossrefs

Programs

  • Mathematica
    nextx[x_Integer] := If[OddQ@x, 3x + 1, x/2]; f[1] = 1; f[n_] := Length@ NestWhileList[nextx, n, # >= n &]; Array[f, 83] (* Bobby R. Treat (drbob(at)bigfoot.com), Sep 16 2006 *)
  • PARI
    A074473(n) = if (n<3, n,  my(N=n, x=1); while (1, if (n%2==0, n/=2, n = 3*n + 1); x++; if (nMichel Marcus, Aug 15 2025
  • Python
    def a(n):
        if n<3: return n
        N=n
        x=1
        while True:
            if n%2==0: n/=2
            else: n = 3*n + 1
            x+=1
            if nIndranil Ghosh, Apr 15 2017
    

Extensions

Edited by N. J. A. Sloane, Sep 15 2006

A126241 Dropping times in the 3n+1 problem (or the Collatz problem). Let T(n):=n/2 if n is even, (3n+1)/2 otherwise (A014682). Let a(n) be the smallest integer k such that T^(k)(n)

Original entry on oeis.org

0, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 2, 1, 7, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 59, 1, 2, 1, 56, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 5, 1, 2, 1, 54, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 7, 1, 2, 1, 54, 1, 2, 1, 4, 1, 2, 1, 51, 1, 2, 1, 5, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 45, 1, 2, 1, 8, 1, 2, 1, 4
Offset: 1

Views

Author

Christof Menzel (christof.menzel(AT)hs-niederrhein.de), Mar 08 2007

Keywords

Comments

Also called "stopping times", although that term is usually reserved for A006666.
From K. Spage, Oct 22 2009, corrected Aug 21 2014: (Start)
Congruency relationship: For n>1 and m>1, all m congruent to n mod 2^(a(n)) have a dropping time equal to a(n).
By refining the definition of the dropping time to "starting with x=n, iterate x until (abs(x) <= abs(n))" the above congruency relationship holds for all nonnegative values of n and all positive or negative values of m including zero.
By this refined definition, a(1)=2 rather than the usual zero set by convention. All other values of positive a(n) remain unchanged. (End)
Terras defines a coefficient stopping time (definition 1.5) tau(n) = d which is the smallest d for which 3^u/2^d < 1 where u is the number of tripling steps among the first d steps starting from n. Clearly tau(n) <= a(n), and Terras conjectures (conjecture 2.9) that tau(n) = a(n) for n>=2. - Olivier Rozier, May 13 2024

Examples

			s(15) = 7, since the trajectory {T^(k)(15)} (k=1,2,3,...) equals 23,35,53,80,40,20,10.
		

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010. See p. 33.

Crossrefs

See A074473, which is the main entry for dropping times.
Records: A060412, A060413.
Cf. A020914 (allowable dropping times). - K. Spage, Aug 22 2014

Programs

  • Mathematica
    Collatz2[n_] := If[n<2, {}, Rest[NestWhileList[If[EvenQ[#], #/2, (3 # + 1)/2] &, n, # >= n &]]]; Table[Length[Collatz2[n]], {n, 1, 1000}]

Formula

a(n) = ceiling(A102419(n)/(1+log(2)/log(3))). - K. Spage, Aug 22 2014

Extensions

Broken link fixed by K. Spage, Oct 22 2009

A008884 3x+1 sequence starting at 27.

Original entry on oeis.org

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079
Offset: 0

Views

Author

Keywords

Comments

27=A060412(4); a(A006577(27))=a(111)=1; a(n)=A161021(n+59) for n with 103<=n<=111. - Reinhard Zumkeller, Jun 03 2009
At step 109 enters the loop 4 2 1 4 2 1 4 2 1 ... - N. J. A. Sloane, Jul 27 2019

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16.
  • H.-O. Peitgen et al., Chaos and Fractals, Springer, p. 33.

Crossrefs

Row 27 of A347270.

Programs

  • Magma
    [ n eq 1 select 27 else IsOdd(Self(n-1)) select 3*Self(n-1)+1 else Self(n-1) div 2: n in [1..70] ]; // Klaus Brockhaus, Dec 25 2010
    
  • Maple
    f := proc(n) option remember; if n = 0 then 27; elif f(n-1) mod 2 = 0 then f(n-1)/2 else 3*f(n-1)+1; fi; end;
  • Mathematica
    NestList[If[EvenQ[#],#/2,3#+1]&,27,70] (* Harvey P. Dale, Jun 30 2011 *)
  • PARI
    Collatz(n,lim=0)={
    my(c=n,e=0,L=List(n)); if(lim==0, e=1; lim=n*10^6);
    for(i=1,lim, if(c%2==0, c=c/2, c=3*c+1); listput(L,c); if(e&&c==1, break));
    return(Vec(L)); }
    print(Collatz(27)) \\ A008884 (from 27 to the first 1)
    \\ Anatoly E. Voevudko, Mar 26 2016

Formula

a(0) = 27, a(n) = 3*a(n-1)+1 if a(n-1) is odd, a(n) = a(n-1)/2 if a(n-1) is even. - Vincenzo Librandi, Dec 24 2010; corrected by Klaus Brockhaus, Dec 25 2010

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001

A060445 "Dropping time" in 3x+1 problem starting at 2n+1 (number of steps to reach a lower number than starting value). Also called glide(2n+1).

Original entry on oeis.org

0, 6, 3, 11, 3, 8, 3, 11, 3, 6, 3, 8, 3, 96, 3, 91, 3, 6, 3, 13, 3, 8, 3, 88, 3, 6, 3, 8, 3, 11, 3, 88, 3, 6, 3, 83, 3, 8, 3, 13, 3, 6, 3, 8, 3, 73, 3, 13, 3, 6, 3, 68, 3, 8, 3, 50, 3, 6, 3, 8, 3, 13, 3, 24, 3, 6, 3, 11, 3, 8, 3, 11, 3, 6, 3, 8, 3, 65, 3, 34, 3, 6, 3, 47, 3, 8, 3, 13, 3, 6, 3, 8, 3
Offset: 0

Views

Author

N. J. A. Sloane, Apr 07 2001

Keywords

Comments

If the starting value is even then of course the next step in the trajectory is smaller (cf. A102419).
The dropping time can be made arbitrarily large: If the starting value is of form n(2^m)-1 and m > 1, the next value is 3n(2^m)-3+1. That divided by 2 is 3n(2^(m-1))-1. It is bigger than the starting value and of the same form - substitute 3n -> n and m-1 -> m, so recursively get an increasing subsequence of m odd values. The dropping time is obviously longer than that. This holds even if Collatz conjecture were refuted. For example, m=5, n=3 -> 95, 286, 143, 430, 215, 646, 323, 970, 485, 1456, 728, 364, 182, 91. So the subsequence in reduced Collatz variant is 95, 143, 215, 323, 485. - Juhani Heino, Jul 21 2017

Examples

			3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2, taking 6 steps, so a(1) = 6.
		

Crossrefs

A060565 gives the first lower number that is reached. Cf. A060412-A060415, A217934.
See A074473, A102419 for other versions of this sequence.
Cf. A122437 (allowable dropping times), A122442 (least k having dropping time A122437(n)).
Cf. A070165.

Programs

  • Haskell
    a060445 0 = 0
    a060445 n = length $ takeWhile (>= n') $ a070165_row n'
                where n' = 2 * n + 1
    -- Reinhard Zumkeller, Mar 11 2013
    
  • Mathematica
    nxt[n_]:=If[OddQ[n],3n+1,n/2]; Join[{0},Table[Length[NestWhileList[nxt, n,#>=n&]]-1, {n,3,191,2}]]  (* Harvey P. Dale, Apr 23 2011 *)
  • Python
    def a(n):
        if n<1: return 0
        n=2*n + 1
        N=n
        x=0
        while True:
            if n%2==0: n//=2
            else: n = 3*n + 1
            x+=1
            if nIndranil Ghosh, Apr 22 2017

Extensions

More terms from Jason Earls, Apr 08 2001 and from Michel ten Voorde Apr 09 2001
Still more terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2001

A102419 "Dropping time" in 3x+1 problem starting at n (number of steps to reach a lower number than starting value); a(1) = 0 by convention. Also called glide(n).

Original entry on oeis.org

0, 1, 6, 1, 3, 1, 11, 1, 3, 1, 8, 1, 3, 1, 11, 1, 3, 1, 6, 1, 3, 1, 8, 1, 3, 1, 96, 1, 3, 1, 91, 1, 3, 1, 6, 1, 3, 1, 13, 1, 3, 1, 8, 1, 3, 1, 88, 1, 3, 1, 6, 1, 3, 1, 8, 1, 3, 1, 11, 1, 3, 1, 88, 1, 3, 1, 6, 1, 3, 1, 83, 1, 3, 1, 8, 1, 3, 1, 13, 1, 3, 1, 6, 1, 3, 1, 8, 1, 3, 1, 73, 1, 3, 1, 13, 1, 3, 1, 6
Offset: 1

Views

Author

N. J. A. Sloane, Sep 15 2006

Keywords

Examples

			1: 0 steps
2 1: 1 step
3 10 5 16 8 4 2 1: 6 steps (before it drops below n)
4 2 1: 1 step
5 16 8 4 2 1: 3 steps
6 3 ...: 1 step
7 22 11 34 17 52 26 13 40 20 10 5 ...: 11 steps
...
Records: 0.1.6.11.96.132...171... (A217934)
at.......1.2.3..7.27.703.10087... (A060412)
		

Crossrefs

For records see A060412, A217934. - N. J. A. Sloane, Oct 20 2012

Programs

  • Mathematica
    Prepend[Table[Length[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>=n&]],{n,2,99}],1]-1 (* Jayanta Basu, May 28 2013 *)
  • Python
    def a(n):
        if n<3: return n - 1
        N=n
        x=0
        while True:
            if n%2==0: n//=2
            else: n = 3*n + 1
            x+=1
            if nIndranil Ghosh, Apr 22 2017

Formula

a(2n) = 1; a(2n+1) = A060445(n).
a(n) = A074473(n)-1 for n>1.
a(n) = floor(A126241(n)*(1+log(2)/log(3))). - K. Spage, Oct 22 2009
Showing 1-10 of 16 results. Next