A146975 First quintisection of A061043: A061043(5n).
0, 3, 8, 3, 24, 7, 48, 63, 16, 99
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
[Numerator(1/49-1/n^2): n in [7..60]]; // Vincenzo Librandi, Sep 07 2016
Table[Numerator[1/49-1/n^2],{n,7,70}] (* Harvey P. Dale, Apr 26 2016 *)
a(n) = numerator(1/49 - 1/n^2); \\ Michel Marcus, Aug 15 2013
[(2*n-1)*(4*n-1): n in [0..50]]; // G. C. Greubel, Sep 19 2018
Table[(2*n - 1)*(4*n - 1), {n, 0, 50}] (* G. C. Greubel, Jul 06 2017 *) LinearRecurrence[{3,-3,1},{1,3,21},50] (* Harvey P. Dale, Aug 25 2019 *)
vector(60, n, n--; (2*n-1)*(4*n-1)) \\ Michel Marcus, Apr 12 2015
&cat [[3, 3, 1]^^30]; // Wesley Ivan Hurt, Jul 02 2016
seq(op([3, 3, 1]), n=1..50); # Wesley Ivan Hurt, Jul 02 2016
A144437[n_]:=Denominator[n/3]; Array[A144437,100] (* Enrique Pérez Herrero, Oct 05 2011 *) CoefficientList[Series[(3 + 3 x + x^2)/(1 - x^3), {x, 0, 120}], x] (* Michael De Vlieger, Jul 02 2016 *) Table[Mod[2*n^2 + 1, 3,1], {n,1,50}] (* G. C. Greubel, Aug 24 2017 *)
a(n)=if(n%3,3,1) \\ Charles R Greathouse IV, Sep 28 2015
The fractions are -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, 7/576, 5/324, 4/225, 85/4356, 1/48, 133/6084, 10/441, 7/300, 55/2304, 253/10404, 2/81, 325/12996, ...
import Data.Ratio ((%), numerator) a061045 = numerator . (1 % 36 -) . recip . (^ 2) . fromIntegral -- Reinhard Zumkeller, Jan 06 2014
[Numerator(1/6^2 -1/n^2): n in [1..80]]; // G. C. Greubel, Feb 24 2023
Numerator[(1/36-1/Range[100]^2)] (* Harvey P. Dale, Mar 17 2013 *)
def A061045(n): return ((n^2-36)/(6*n)^2).numerator() [A061045(n) for n in range(1,81)] # G. C. Greubel, Feb 24 2023
[n*(2+5*n): n in [0..50] ]; // Vincenzo Librandi, Aug 06 2011
A168668:=n->n*(2+5*n): seq(A168668(n), n=0..50); # Wesley Ivan Hurt, Mar 28 2015
f[n_]:=n*(2+5*n);f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*) LinearRecurrence[{3,-3,1},{0,7,24},50] (* Harvey P. Dale, Sep 09 2021 *)
vector(50,n,n--;n*(2+5*n)) \\ Derek Orr, Jun 26 2015
[Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *) a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
[(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
[numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
[5+3/2*(-1)^(n-1)*(n-1)+3*(-1)^(n-1)+5/2*(n-1): n in [1..70]]; // Vincenzo Librandi, Jul 30 2011
A144433:=n->(n+1)*4^(n mod 2); seq(A144433(n), n=1..100); # Wesley Ivan Hurt, Nov 27 2013
Table[(n + 1)* 4^Mod[n, 2], {n, 100}] (* Wesley Ivan Hurt, Nov 27 2013 *)
x='x+O('x^50); Vec( x*(8+3*x-x^3)/((1-x)^2*(1+x)^2)) \\ G. C. Greubel, Sep 19 2018
The full array of numerators starts in row n=1 with columns m>=0 as: -1...0...3...8..15..24..35..48..63..80..99. A005563 -1..-3...0...5...3..21...2..45..15..77...6. A061037, A070262 -1..-8..-5...0...7..16...1..40..55...8..91. A061039 -1.-15..-3..-7...0...9...5..33...3..65..21. A061041 -1.-24.-21.-16..-9...0..11..24..39..56...3. A061043 -1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045 -1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047 -1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049 The triangle is the portion below the main diagonal, left from the zeros, 0<=m<n.
T[n_, 0] := -1; T[n_, k_] := 1/n^2 - 1/k^2; Table[Numerator[T[n, k]], {n, 1, 100}, {k, 0, n - 1}] // Flatten (* G. C. Greubel, Sep 19 2018 *)
The table starts 3 5 8 7 3 15 9 16 21 24 11 5 1 2 35 13 24 33 40 45 48 15 7 39 3 55 15 63 17 32 5 56 65 8 77 80 19 9 51 4 3 21 91 6 99
[[Numerator(1/(n-k)^2 -1/n^2): k in [1..n-1]]: n in [2..20]]; // G. C. Greubel, Sep 20 2018
Table[Numerator[1/(n-k)^2 -1/n^2], {n, 2, 20}, {k, 1, n-1}]//Flatten (* G. C. Greubel, Sep 20 2018 *)
for(n=2,20, for(k=1,n-1, print1(numerator(1/(n-k)^2 -1/n^2), ", "))) \\ G. C. Greubel, Sep 20 2018
Comments