A062137
Coefficient triangle of generalized Laguerre polynomials n!*L(n,3,x) (rising powers of x).
Original entry on oeis.org
1, 4, -1, 20, -10, 1, 120, -90, 18, -1, 840, -840, 252, -28, 1, 6720, -8400, 3360, -560, 40, -1, 60480, -90720, 45360, -10080, 1080, -54, 1, 604800, -1058400, 635040, -176400, 25200, -1890, 70, -1, 6652800, -13305600, 9313920
Offset: 0
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 ...
0: 1
1: 4 -1
2: 20 -10 1
3: 120 -90 18 -1
4: 840 -840 252 -28 1
5: 6720 -8400 3360 -560 40 -1
... Formatted by _Wolfdieter Lang_, Jul 07 2014
For more rows see the link.
n = 2: 2!*L(2,3,x) = 20 - 10*x + x^2.
- A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.
-
Flatten[Table[((-1)^m)*n!*Binomial[n+3,n-m]/m!,{n,0,9},{m,0,n}]] (* Indranil Ghosh, Feb 23 2017 *)
-
row(n) = Vecrev(n!*pollaguerre(n, 3)); \\ Michel Marcus, Feb 06 2021
A086885
Lower triangular matrix, read by rows: T(i,j) = number of ways i seats can be occupied by any number k (0<=k<=j<=i) of persons.
Original entry on oeis.org
2, 3, 7, 4, 13, 34, 5, 21, 73, 209, 6, 31, 136, 501, 1546, 7, 43, 229, 1045, 4051, 13327, 8, 57, 358, 1961, 9276, 37633, 130922, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114, 11, 111, 1021, 8501
Offset: 1
One person:
T(1,1)=a(1)=2: 0,1 (seat empty or occupied);
T(2,1)=a(2)=3: 00,10,01 (both seats empty, left seat occupied, right seat occupied).
Two persons:
T(2,2)=a(3)=7: 00,10,01,20,02,12,21;
T(3,2)=a(5)=13: 000,100,010,001,200,020,002,120,102,012,210,201,021.
Triangle starts:
2;
3 7;
4 13 34;
5 21 73 209;
6 31 136 501 1546;
...
- Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 141, flattened)
- Ed Jones, Number of seatings, discussion in newsgroup sci.math, Aug 9, 2003.
- R. J. Mathar, The number of binary nxm matrices with at most k 1's in each row or columns, Table 1.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Luca Zecchini, Tobias Bleifuß, Giovanni Simonini, Sonia Bergamaschi, and Felix Naumann, Determining the Largest Overlap between Tables, Proc. ACM Manag. Data (SIGMOD 2024) Vol. 2, No. 1, Art. 48. See p. 48:6.
- Index entries for sequences related to Laguerre polynomials
-
[Factorial(k)*Evaluate(LaguerrePolynomial(k, n-k), -1): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
-
A086885 := proc(n,k)
add( binomial(n,j)*binomial(k,j)*j!,j=0..min(n,k)) ;
end proc: # R. J. Mathar, Dec 19 2014
-
Table[Table[Sum[k! Binomial[n, k] Binomial[j, k], {k, 0, j}], {j, 1, n}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Jul 09 2015 *)
Table[m! LaguerreL[m, n - m, -1], {n, 10}, {m, n}] // Flatten (* Eric W. Weisstein, Apr 25 2017 *)
-
T(i, j) = j!*pollaguerre(j, i-j, -1); \\ Michel Marcus, Feb 23 2021
-
flatten([[factorial(k)*gen_laguerre(k, n-k, -1) for k in [1..n]] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
A143497
Triangle of unsigned 2-Lah numbers.
Original entry on oeis.org
1, 4, 1, 20, 10, 1, 120, 90, 18, 1, 840, 840, 252, 28, 1, 6720, 8400, 3360, 560, 40, 1, 60480, 90720, 45360, 10080, 1080, 54, 1, 604800, 1058400, 635040, 176400, 25200, 1890, 70, 1, 6652800, 13305600, 9313920, 3104640, 554400, 55440, 3080, 88, 1
Offset: 2
Triangle begins:
=========================================
n\k | 2 3 4 5 6 7
----+------------------------------------
2 | 1
3 | 4 1
4 | 20 10 1
5 | 120 90 18 1
6 | 840 840 252 28 1
7 | 6720 8400 3360 560 40 1
...
T(4,3) = 10. The ten partitions of {1,2,3,4} into 3 ordered lists such that the elements 1 and 2 lie in different lists are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {1}{4}{2,3} and {1}{4}{3,2}, {2}{3}{1,4} and {2}{3}{4,1}, {2}{4}{1,3} and {2}{4}{3,1}. The remaining two partitions {3}{4}{1,2} and {3}{4}{2,1} are not allowed because the elements 1 and 2 belong to the same block.
- Muniru A Asiru, Table of n, a(n) for n = 2..4951 Rows n = 2..100
- A. Z. Broder, The r-Stirling numbers, Report CS-TR-82-949, Stanford University, Department of Computer Science, 1982.
- A. Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984).
- Gi-Sang Cheon and Ji-Hwan Jung, r-Whitney numbers of Dowling lattices, Discrete Math., 312 (2012), 2337-2348.
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Tech Report TR 99-05, 1999.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- G. Nyul and G. Rácz, The r-Lah numbers, Discrete Mathematics, 338 (2015), 1660-1666.
- Marko Petkovsek and Tomaz Pisanski, Combinatorial interpretation of unsigned Stirling and Lah numbers, University of Ljubljana, Preprint series, Vol. 40 (2002), 837.
- Jose L. Ramirez and M. Shattuck, A (p, q)-Analogue of the r-Whitney-Lah Numbers, Journal of Integer Sequences, 19, 2016, #16.5.6.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
- M. Shattuck, Generalized r-Lah numbers, arXiv:1412.8721 [math.CO], 2014.
Cf.
A001715 (column 2),
A007318,
A008275,
A008277,
A061206 (column 3),
A062137,
A062141 -
A062144 ( column 4 to column 7),
A062146 (alt. row sums),
A062147 (row sums),
A105278 (unsigned Lah numbers),
A143491,
A143494,
A143498,
A143499.
-
T:=Flat(List([2..10],n->List([2..n],k->(Factorial(n-2)/Factorial(k-2))*Binomial(n+1,k+1)))); # Muniru A Asiru, Nov 27 2018
-
T := (n, k) -> ((n-2)!/(k-2)!)*binomial(n+1, k+1):
for n from 2 to 11 do seq(T(n, k), k = 2..n) od;
-
T[n_, k_] := (n-2)!/(k-2)!*Binomial[n+1, k+1]; Table[T[n, k], {n,2,10}, {k,2,n}] // Flatten (* Amiram Eldar, Nov 27 2018 *)
-
create_list((n - 2)!/(k - 2)!*binomial(n + 1, k + 1), n, 2, 12, k, 2, n); /* Franck Maminirina Ramaharo, Nov 27 2018 */
A216294
Triangular array read by rows: T(n,k) is the number of partial permutations of {1,2,...,n} that have exactly k cycles, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 13, 14, 6, 1, 73, 84, 41, 10, 1, 501, 609, 325, 95, 15, 1, 4051, 5155, 2944, 965, 190, 21, 1, 37633, 49790, 30023, 10689, 2415, 343, 28, 1, 394353, 539616, 340402, 129220, 32179, 5348, 574, 36, 1, 4596553, 6478521, 4246842, 1698374, 455511, 84567, 10794, 906, 45, 1
Offset: 0
1;
1, 1;
3, 3, 1;
13, 14, 6, 1;
73, 84, 41, 10, 1;
501, 609, 325, 95, 15, 1;
-
gf := exp(x / (1 - x)) / (1 - x)^y:
serx := series(gf, x, 10): poly := n -> simplify(coeff(serx, x, n)):
seq(print(seq(n!*coeff(poly(n), y, k), k = 0..n)), n = 0..9); # Peter Luschny, Feb 23 2023
-
nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[Exp[ x/(1-x)]/(1-x)^y,{x,0,nn}],{x,y}]]//Flatten
A293985
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-x))/(1-x)^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 13, 1, 4, 13, 34, 73, 1, 5, 21, 73, 209, 501, 1, 6, 31, 136, 501, 1546, 4051, 1, 7, 43, 229, 1045, 4051, 13327, 37633, 1, 8, 57, 358, 1961, 9276, 37633, 130922, 394353, 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 4596553
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ... A000012;
1, 2, 3, 4, 5, ... A000027;
3, 7, 13, 21, 31, ... A002061;
13, 34, 73, 136, 229, ... A135859;
73, 209, 501, 1045, 1961, ...
501, 1546, 4051, 9276, 19081, ...
Antidiagonal rows begin as:
1;
1, 1;
1, 2, 3;
1, 3, 7, 13;
1, 4, 13, 34, 73;
1, 5, 21, 73, 209, 501; - _G. C. Greubel_, Mar 09 2021
-
function t(n,k)
if n eq 0 then return 1;
else return Factorial(n-1)*(&+[(j+k)*t(n-j,k)/Factorial(n-j): j in [1..n]]);
end if; return t;
end function;
[t(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
-
t[n_, k_]:= t[n, k]= If[n==0, 1, (n-1)!*Sum[(j+k)*t[n-j,k]/(n-j)!, {j,n}]];
T[n_,k_]:= t[k,n-k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
-
@CachedFunction
def t(n,k): return 1 if n==0 else factorial(n-1)*sum( (j+k)*t(n-j,k)/factorial(n-j) for j in (1..n) )
def T(n,k): return t(k,n-k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
A349776
Triangle read by rows: T(n,k) is the number of partitions of set [n] into a set of at most k lists, with 0 <= k <= n. Also called broken permutations.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 6, 12, 13, 0, 24, 60, 72, 73, 0, 120, 360, 480, 500, 501, 0, 720, 2520, 3720, 4020, 4050, 4051, 0, 5040, 20160, 32760, 36960, 37590, 37632, 37633, 0, 40320, 181440, 322560, 381360, 393120, 394296, 394352, 394353
Offset: 0
For n=3 the T(3, 2)=12 broken permutations are {(1, 2, 3)}, {(1, 3, 2)}, {(2, 1, 3)}, {(2, 3, 1)}, {(3, 1, 2)}, {(3, 2, 1)}, {(1, 2), (3)}, {(2, 1), (3)}, {(1, 3), (2)}, {(3, 1), (2)}, {(2, 3), (1)}, {(3, 2), (1)}.
If you add the set of 3 lists {(1), (2), (3)}, you get T(3, 3) = 13 = A000262(3).
Triangle begins:
1;
0, 1;
0, 2, 3;
0, 6, 12, 13;
0, 24, 60, 72, 73;
0, 120, 360, 480, 500, 501;
0, 720, 2520, 3720, 4020, 4050, 4051;
...
- Kenneth P. Bogart, Combinatorics Through Guided Discovery, Kenneth P. Bogart, 2004, 57-58.
Row sums give
A062147(n-1) for n>=1.
-
T:= proc(n, k) option remember; `if`(k<0, 0,
binomial(n-1, k-1)*n!/k! +T(n, k-1))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Dec 01 2021
-
T[n_, k_] := Sum[Binomial[n-1, n-j] n!/j!, {j, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2023 *)
-
Lah(n, k) = if (n==0, 1, binomial(n-1, k-1)*n!/k!); \\ A271703
T(n, k) = sum(j=0, k, Lah(n, j)); \\ Michel Marcus, Nov 30 2021
-
def T(n, k):
return sum(binomial(n, i)*falling_factorial(n-1, n-i) for i in (0..k))
print([[T(n, k) for k in (0..n)] for n in (0..9)]) # Peter Luschny, Dec 01 2021
Showing 1-6 of 6 results.
Comments