A349355 Dirichlet convolution of A003958 with A063441 (Dirichlet inverse of A003959), where A003958 and A003959 are fully multiplicative with a(p) = p-1 and p+1 respectively.
1, -2, -2, -2, -2, 4, -2, -2, -4, 4, -2, 4, -2, 4, 4, -2, -2, 8, -2, 4, 4, 4, -2, 4, -8, 4, -8, 4, -2, -8, -2, -2, 4, 4, 4, 8, -2, 4, 4, 4, -2, -8, -2, 4, 8, 4, -2, 4, -12, 16, 4, 4, -2, 16, 4, 4, 4, 4, -2, -8, -2, 4, 8, -2, 4, -8, -2, 4, 4, -8, -2, 8, -2, 4, 16, 4, 4, -8, -2, 4, -16, 4, -2, -8, 4, 4, 4, 4, -2, -16
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Wikipedia, Dirichlet convolution
Crossrefs
Programs
-
Mathematica
f[p_, e_] := -2*(p - 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
-
PARI
A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); }; A063441(n) = (moebius(n)*sigma(n)); \\ Also Dirichlet inverse of A003959. A349355(n) = sumdiv(n,d,A003958(n/d)*A063441(d));
Formula
Multiplicative with a(p^e) = -2*(p-1)^(e-1). - Amiram Eldar, Nov 16 2021
Comments