cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A349355 Dirichlet convolution of A003958 with A063441 (Dirichlet inverse of A003959), where A003958 and A003959 are fully multiplicative with a(p) = p-1 and p+1 respectively.

Original entry on oeis.org

1, -2, -2, -2, -2, 4, -2, -2, -4, 4, -2, 4, -2, 4, 4, -2, -2, 8, -2, 4, 4, 4, -2, 4, -8, 4, -8, 4, -2, -8, -2, -2, 4, 4, 4, 8, -2, 4, 4, 4, -2, -8, -2, 4, 8, 4, -2, 4, -12, 16, 4, 4, -2, 16, 4, 4, 4, 4, -2, -8, -2, 4, 8, -2, 4, -8, -2, 4, 4, -8, -2, 8, -2, 4, 16, 4, 4, -8, -2, 4, -16, 4, -2, -8, 4, 4, 4, 4, -2, -16
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2021

Keywords

Comments

Multiplicative because both A003958 and A063441 are.
In Dirichlet ring this sequence works as a kind of replacement operator which replaces the factor A003959 with factor A003958. For example, convolving this with A003968 (the Möbius transform of A003959) produces A003966, the Möbius transform of A003958.

Crossrefs

Cf. A003958, A003959, A003966, A003968, A063441, A349356 (Dirichlet inverse), A349357 (sum with it).
Cf. also A349382.

Programs

  • Mathematica
    f[p_, e_] := -2*(p - 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A063441(n) = (moebius(n)*sigma(n)); \\ Also Dirichlet inverse of A003959.
    A349355(n) = sumdiv(n,d,A003958(n/d)*A063441(d));

Formula

a(n) = Sum_{d|n} A003958(n/d) * A063441(d).
Multiplicative with a(p^e) = -2*(p-1)^(e-1). - Amiram Eldar, Nov 16 2021

A003959 If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144, 68
Offset: 1

Views

Author

Keywords

Comments

Completely multiplicative.
Sum of divisors of n with multiplicity. If n = p^m, the number of ways to make p^k as a divisor of n is C(m,k); and sum(C(m,k)*p^k) = (p+1)^k. The rest follows because the function is multiplicative. - Franklin T. Adams-Watters, Jan 25 2010

Crossrefs

Programs

  • Haskell
    a003959 1 = 1
    a003959 n = product $ map (+ 1) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
  • Maple
    a:= n-> mul((i[1]+1)^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); a /@ Range[67] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X-p*X))[n]) /* Ralf Stephan */
    

Formula

Multiplicative with a(p^e) = (p+1)^e. - David W. Wilson, Aug 01 2001
Sum_{n>0} a(n)/n^s = Product_{p prime} 1/(1-p^(-s)-p^(1-s)) (conjectured). - Ralf Stephan, Jul 07 2013
This follows from the absolute convergence of the sum (compare with a(n) = n^2) and the Euler product for completely multiplicative functions. Convergence occurs for at least Re(s)>3. - Thomas Anton, Jul 15 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065488/2 = 1/(2*A005596) = 1.3370563627850107544802059152227440187511993141988459926... - Vaclav Kotesovec, Jul 17 2021
From Thomas Scheuerle, Jul 19 2021: (Start)
a(n) = gcd(A166642(n), A166643(n)).
a(n) = A166642(n)/A061142(n).
a(n) = A166643(n)/A165824(n).
a(n) = A166644(n)/A165825(n).
a(n) = A166645(n)/A165826(n).
a(n) = A166646(n)/A165827(n).
a(n) = A166647(n)/A165828(n).
a(n) = A166649(n)/A165830(n).
a(n) = A166650(n)/A165831(n).
a(n) = A167351(n)/A166590(n). (End)
Dirichlet g.f.: zeta(s-1) * Product_{primes p} (1 + 1/(p^s - p - 1)). - Vaclav Kotesovec, Aug 22 2021

Extensions

Definition reedited (with formula) by Daniel Forgues, Nov 17 2009

A160889 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 4.

Original entry on oeis.org

1, 7, 13, 28, 31, 91, 57, 112, 117, 217, 133, 364, 183, 399, 403, 448, 307, 819, 381, 868, 741, 931, 553, 1456, 775, 1281, 1053, 1596, 871, 2821, 993, 1792, 1729, 2149, 1767, 3276, 1407, 2667, 2379, 3472, 1723, 5187, 1893, 3724, 3627, 3871, 2257, 5824, 2793
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

Dirichlet convolution of A000290 and the series of absolute values of A063441. - R. J. Mathar, Jun 20 2011
a(n) is the number of lattices L in Z^3 such that the quotient group Z^3 / L is C_nm x C_m x C_m (and also C_nm x C_nm x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

Examples

			There are 35 = A160870(4,3) lattices of volume 4 in Z^3. Among them, 28 give the quotient group C_4 and 7 give the quotient group C_2 x C_2. Hence, a(4) = 28 and a(2) = 7.
There are 2667 = A160870(32,3) lattices of volume 32 in Z^3. Among them, a(32) = 1792 give the quotient group C_32 (m=1); a(4) = 28 give C_8 x C_2 x C_2 (m=2); a(2) = 7 give C_4 x C_4 x C_2 (m=2).
		

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

Crossrefs

Programs

  • Mathematica
    A160889[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(4-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Aug 22 2010 *)
  • PARI
    vector(100, n, sumdiv(n^2, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))*sigma(n^2/d), 0))) \\ Altug Alkan, Oct 30 2015

Formula

Moebius transform of A064969. Multiplicative with a(p^e) = (p^2+p+1)*p^(2*e-2). - Vladeta Jovovic, Nov 21 2009
a(n) = J_3(n)/J_1(n)=J_3(n)/phi(n)=A059376(n)/A000010(n), where J_k is the k-th Jordan Totient Function. - Enrique Pérez Herrero, Aug 22 2010
Dirichlet g.f.: zeta(s-2)*product_{primes p} (1+p^(1-s)+p^(-s)). - R. J. Mathar, Jun 20 2011
From Álvar Ibeas, Oct 30 2015: (Start)
a(n) = A254981(n^2). For squarefree n, a(n) = A000203(n^2).
a(n) = Sum_{d|n, n/d squarefree} d^2 * A000203(n/d).
(End)
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = A330595 = Product_{primes p} (1 + 1/p^2 + 1/p^3) = 1.748932997843245303033906997685114802259883493595480897273662144... - Vaclav Kotesovec, Dec 18 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2/((p^2-1) * (p^2 + p + 1))) = 1.400940662893945919882073637564538872630336562726971915578687405304250550... - Vaclav Kotesovec, Sep 19 2020
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^3). - Ridouane Oudra, Mar 26 2025

Extensions

Definition corrected by Vladeta Jovovic, Nov 21 2009
Typo in Mathematica program and formula fixed by Enrique Pérez Herrero, Oct 19 2010

A062953 Multiplicative with a(p^e) = -p.

Original entry on oeis.org

1, -2, -3, -2, -5, 6, -7, -2, -3, 10, -11, 6, -13, 14, 15, -2, -17, 6, -19, 10, 21, 22, -23, 6, -5, 26, -3, 14, -29, -30, -31, -2, 33, 34, 35, 6, -37, 38, 39, 10, -41, -42, -43, 22, 15, 46, -47, 6, -7, 10, 51, 26, -53, 6, 55, 14, 57, 58, -59, -30, -61, 62, 21, -2, 65, -66, -67, 34, 69, -70, -71, 6, -73, 74, 15, 38, 77, -78, -79
Offset: 1

Views

Author

Vladeta Jovovic, Jul 21 2001

Keywords

Comments

Except for first term, row products of A142971. - Mats Granvik and Gary W. Adamson, Jul 15 2008
Dirichlet inverse of A003968. - Werner Schulte, Oct 25 2018

Crossrefs

Apart from signs, essentially same as A007947.

Programs

  • Maple
    with(numtheory): seq(coeff(series(add(mobius(k)*sigma(k)*x^k/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 80); # Muniru A Asiru, Oct 26 2018
  • Mathematica
    A062953[n_]:=DivisorSum[n,MoebiusMu[ # ]*DivisorSigma[1,# ]&] (* Enrique Pérez Herrero, Aug 24 2010 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d)*sigma(d)); \\ Michel Marcus, Feb 19 2017

Formula

a(n) = Sum_{d|n} mu(d)*sigma(d) = Sum_{d|n} A063441(d).
From Enrique Pérez Herrero, Aug 24 2010: (Start)
a(n) = Sum_{d|n} mu(d)*psi(d), where psi is A001615.
a(n) = rad(n)*(-1)^omega(n) = A007947(n)*(-1)^A001221(n). (End)
G.f.: Sum_{k>=1} mu(k)*sigma(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Feb 19 2017
a(n) = (n*invphi(n))/phi(n) = (n*A023900(n))/(A000010(n)). - Amrit Awasthi, Jan 30 2022
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 1/p^s - 1/p^(s-1)). - Amiram Eldar, Sep 18 2023

A349621 Dirichlet convolution of A003415 with the Dirichlet inverse of A003959.

Original entry on oeis.org

0, 1, 1, 1, 1, -2, 1, 0, 2, -2, 1, -3, 1, -2, -2, -4, 1, -5, 1, -3, -2, -2, 1, -4, 4, -2, 3, -3, 1, 3, 1, -16, -2, -2, -2, -7, 1, -2, -2, -4, 1, 3, 1, -3, -5, -2, 1, -4, 6, -9, -2, -3, 1, -12, -2, -4, -2, -2, 1, 5, 1, -2, -5, -48, -2, 3, 1, -3, -2, 3, 1, -8, 1, -2, -9, -3, -2, 3, 1, -4, 0, -2, 1, 5, -2, -2, -2, -4
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e/p; d[1] = 0; d[n_] := n*Plus @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, MoebiusMu[#] * DivisorSigma[1, #] * d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A063441(n) = (moebius(n)*sigma(n)); \\ Also Dirichlet inverse of A003959.
    A349621(n) = sumdiv(n,d,A003415(n/d)*A063441(d));

Formula

a(n) = Sum_{d|n} A003415(n/d) * A063441(d).

A128408 Triangle read by rows: A128407 * A051731 as infinite lower triangular matrices.

Original entry on oeis.org

1, -1, -1, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 1, 1, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 01 2007

Keywords

Comments

Left and right borders = mu(n), A008683. Row sums = A008966: (1, -2, -2, 0, -2, 4, -2, 0, 0, 4, ...). A128408 * [1,2,3,...] = A063441: (1, -3, -4, 0, -6, 12, ...). A054524 = A051731 * A128407.

Examples

			First few rows of the triangle:
   1;
  -1, -1;
  -1,  0, -1;
   0,  0,  0,  0;
  -1,  0,  0,  0, -1;
   1,  1,  1,  0,  0,  1;
  ...
		

Crossrefs

Extensions

a(45) = 0 inserted and more terms from Georg Fischer, Jun 05 2023

A349357 a(n) = A349355(n) + A349356(n).

Original entry on oeis.org

2, 0, 0, 4, 0, 8, 0, 16, 4, 8, 0, 16, 0, 8, 8, 52, 0, 24, 0, 16, 8, 8, 0, 40, 4, 8, 24, 16, 0, 0, 0, 160, 8, 8, 8, 56, 0, 8, 8, 40, 0, 0, 0, 16, 24, 8, 0, 112, 4, 40, 8, 16, 0, 80, 8, 40, 8, 8, 0, 16, 0, 8, 24, 484, 8, 0, 0, 16, 8, 0, 0, 152, 0, 8, 40, 16, 8, 0, 0, 112, 112, 8, 0, 16, 8, 8, 8, 40, 0, 16, 8, 16
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := -2*(p - 1)^(e - 1); f2[p_, e_] := 2*(p + 1)^(e - 1); a[1] = 2; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A349357(n) = (A349355(n)+A349356(n)); \\ Needs also code from A349355 and A349356.

Formula

a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A349355(d) * A349356(n/d). [As the sequences are Dirichlet inverses of each other]

A343442 If n = Product (p_j^k_j) then a(n) = Product (p_j + 2), with a(1) = 1.

Original entry on oeis.org

1, 4, 5, 4, 7, 20, 9, 4, 5, 28, 13, 20, 15, 36, 35, 4, 19, 20, 21, 28, 45, 52, 25, 20, 7, 60, 5, 36, 31, 140, 33, 4, 65, 76, 63, 20, 39, 84, 75, 28, 43, 180, 45, 52, 35, 100, 49, 20, 9, 28, 95, 60, 55, 20, 91, 36, 105, 124, 61, 140, 63, 132, 45, 4, 105, 260, 69, 76, 125, 252
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((#[[1]] + 2) & /@ FactorInteger[n]); Table[a[n], {n, 70}]
    nmax = 70; CoefficientList[Series[Sum[MoebiusMu[k]^2 DivisorSigma[1, k] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^2 * sigma(d)) \\ Andrew Howroyd, Apr 15 2021

Formula

G.f.: Sum_{k>=1} mu(k)^2 * sigma(k) * x^k / (1 - x^k), where mu = A008683 and sigma = A000203.
a(n) = Sum_{d|n} mu(d)^2 * sigma(d).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/(12*zeta(3)) = 0.684216... (A335005). - Amiram Eldar, Nov 13 2022
a(n) = Sum_{d|n} mu(d)^2*psi(d), where psi is A001615. - Ridouane Oudra, Jul 24 2025

A143255 Triangle read by rows, A128407 * A126988; 1<=k<=n.

Original entry on oeis.org

1, -2, -1, -3, 0, -1, 0, 0, 0, 0, -5, 0, 0, 0, -1, 6, 3, 2, 0, 0, 1, -7, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 5, 0, 0, 2, 0, 0, 0, 0, 1, -11, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 14, 7, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 02 2008

Keywords

Comments

Left border = A055615: (1, -2, -3, 0, -5, 6, -7,...).
Right border = A008683, mu(n).
Row sums = A063441: (1, -3, -4, 0, -6, 12, 8,...).

Examples

			Triangle begins:
  1;
  -2, -1;
  -3, 0, -1;
  0, 0, 0, 0;
  -5, 0, 0, 0, -1;
  6, 3, 2, 0, 0, 1;
  -7, 0, 0, 0, 0, 0, -1;
  0, 0, 0, 0, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 0, 0, 0, 0;
  10, 5, 0, 0, 2, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] = MoebiusMu[n]*If[m == 1, n, If[Mod[n, m] == 0, n/m, 0]]; Table[t[n, m], {n, 1, 14}, {m, 1, n}] // Flatten (* Roger L. Bagula, Sep 06 2008 *)

Formula

Triangle read by rows, A128407 * A126988; 1<=k<=n.
t(n,m) = MoebiusMu(n) * A126988(n,m); t(n,m) = MoebiusMu(n) * if(m == 1, n, if(n mod m == 0, n/m, 0)). - Roger L. Bagula, Sep 06 2008

A062562 a(n) = Sum_{k=1..n} mu(k)*sigma(k).

Original entry on oeis.org

0, 1, -2, -6, -6, -12, 0, -8, -8, -8, 10, -2, -2, -16, 8, 32, 32, 14, 14, -6, -6, 26, 62, 38, 38, 38, 80, 80, 80, 50, -22, -54, -54, -6, 48, 96, 96, 58, 118, 174, 174, 132, 36, -8, -8, -8, 64, 16, 16, 16, 16, 88, 88, 34, 34, 106, 106, 186, 276, 216, 216, 154, 250, 250, 250, 334, 190, 122, 122, 218, 74, 2, 2, -72, 42, 42, 42
Offset: 0

Views

Author

Jason Earls, Jul 03 2001

Keywords

Crossrefs

Partial sums of A063441.

Programs

  • Mathematica
    Table[Sum[MoebiusMu[k]DivisorSigma[1,k],{k,n}],{n,0,80}] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    s=[]; for(n=0,130,s=concat(s,sum(k=1,n,moebius(k)*sigma(k)))); s

Extensions

Corrected by Harvey P. Dale, Nov 08 2011
Showing 1-10 of 11 results. Next