A068198 Duplicate of A064899.
6, 10, 14, 21, 22, 26, 34, 38, 39, 46, 55, 57, 58, 62, 74, 82, 86, 93, 94, 106, 111, 118
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a064911 = a010051 . a032742 -- Reinhard Zumkeller, Mar 13 2011
with(numtheory): a:= n-> `if`(bigomega(n)=2, 1, 0): seq(a(n), n=1..120); # Alois P. Heinz, Mar 16 2011
Table[If[PrimeOmega[n] == 2, 1, 0], {n, 105}] (* Jayanta Basu, May 25 2013 *)
a(n)=bigomega(n)==2 \\ Charles R Greathouse IV, Mar 13 2011
a(4) = 4 because every group of order 4 is abelian. These two abelian groups of order 4 are the cyclic group C_4 and the Klein four-group = C_2 X C_2, the smallest non-cyclic abelian group. - _Bernard Schott_, Feb 21 2023
a051532 n = a051532_list !! (n-1) a051532_list = filter ((== 1) . a212793) a056867_list -- Reinhard Zumkeller, Jun 28 2013
okQ[n_] := Module[{f, lf, p, e, v}, f = FactorInteger[n]; lf = Length[f]; p = f[[All, 1]]; e = f[[All, 2]]; If[AnyTrue[e, # > 2&], Return[False]]; v = p^e; For[i = 1, i <= lf, i++, For[j = i+1, j <= lf, j++, If[Mod[v[[i]], p[[j]]]==1 || Mod[v[[j]], p[[i]]]==1, Return[False]]]]; Return[True]]; Select[Range[200], okQ] (* Jean-François Alcover, May 03 2012, after PARI, updated Jan 10 2020 *)
is(n)=my(f=factor(n),v=vector(#f[,1])); for(i=1,#v, if(f[i,2]>2, return(0), v[i]=f[i,1]^f[i,2])); for(i=1,#v, for(j=i+1,#v, if(v[i]%f[j,1]==1 || v[j]%f[i,1]==1, return(0)))); 1 \\ Charles R Greathouse IV, Feb 13 2011
from sympy import factorint def ok(n): if n == 1: return True f = factorint(n) p, e = f.keys(), f.values() if max(e) >= 3: return False return all((pi**k)%pj!=1 for pi in p for pj in p if pj!=pi for k in range(1, f[pi]+1)) print([k for k in range(1, 162) if ok(k)]) # Michael S. Branicky, Feb 20 2023
nsp[n_Integer] := nsp[n] = Block[{sp = n + 1}, While[PrimeOmega[sp] != 2, sp++]; sp]; a[n_Integer] := Block[{sp = 4}, While[ fi = FactorInteger@ sp; Mod[fi[[-1, 1]], fi[[1, 1]]] != n, sp = nsp[sp]]; sp]; Array[a, 46, 0] (* Robert G. Wilson v, Aug 20 2025 *)
okQ[n_] := Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; e == {1, 1} && Mod[p[[2]], p[[1]]] == 2]; Select[Range[1000], okQ] Select[Range[1000],PrimeOmega[#]==2&&Mod[FactorInteger[#][[;;,1]][[2]],FactorInteger[#][[;;,1]][[1]]]==2&]//Quiet (* Harvey P. Dale, Jan 09 2025 *)
isok(n) = (bigomega(n)==2) && (f=factor(n)) && (#f~ == 2) && ((f[2,1] % f[1,1]) == 2); \\ Michel Marcus, May 20 2017
filter:= proc(n) local F,p,q; F:= numtheory:-factorset(n); for p in F do if member(1,map(`modp`,F,p)) then return true fi od: false end proc: select(filter, [$1..1000]); # Robert Israel, Sep 15 2014
filterQ[n_] := With[{pp = FactorInteger[n][[All, 1]]}, AnyTrue[pp, MemberQ[pp, q_ /; Divisible[q - 1, #]]&]]; Select[Range[2, 200], filterQ] (* Jean-François Alcover, Jul 18 2020 *)
def is_A069209(n) : return any((q-1)%p==0 for p,q in Combinations(prime_divisors(n),2)) # Eric M. Schmidt, Sep 15 2014
pmp11Q[n_]:=Module[{fi=FactorInteger[n][[All,1]]},Mod[fi[[2]],fi[[1]]] == 11]; Select[ Range[12000],PrimeNu[#]==PrimeOmega[#]==2&&pmp11Q[#]&] (* Harvey P. Dale, Jun 25 2018 *)
isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 11);
from sympy import factorint def is_A064909(n): f = factorint(n) return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 11) def first_A064909(n): x = 1 an = [] while len(an) < n: if is_A064909(x): an.append(x) x += 2 return an # John Cerkan, Apr 14 2018
In both cases, C, D mean cyclic, dihedral groups of the stated order; the symbols ~ and : mean isomorphic to and semidirect product respectively.A number m is a term iff m is squarefree and m has exactly one pair of prime factors (p, q) such that q == 1 (mod p). - David Radcliffe, Jul 30 2025
There is only one group of order 1, 2, 3, 5 and the two groups of order 4 are abelian; hence 6 is the smallest term because the two groups of order 6 are the abelian and cyclic group C_6, while the nonabelian group is the symmetric group S_3 isomorphic to dihedral group D_6. The smallest odd term is 21, the two corresponding groups are C_21 and semi-direct product C_7 : C_3. The smallest term of the form p*q*r, p < q < r primes, is 105, the two corresponding groups are C_105 and semi-direct product C_35 : C_3.
is(n,f=factor(n))=my(p=f[,1],s); if(#p && vecmax(f[,2])>1, return(0)); for(i=2,#p, for(j=1,i-1, if(p[i]%p[j]==1 && s++>1, return(0)))); s==1 \\ Charles R Greathouse IV, Jan 08 2022
list(lim)=my(v=List()); forsquarefree(n=6,lim\1, my(p=n[2][,1],s); for(i=2,#p, for(j=1,i-1, if(p[i]%p[j]==1 && s++>1, next(3)))); if(s==1, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2022
from sympy import factorint def is_ok(m): f = factorint(m) if any(e > 1 for e in f.values()): return False # m must be squarefree return sum(q % p == 1 for p in f for q in f) == 1 # David Radcliffe, Jul 30 2025
a068919 n = a068919_list !! (n-1) a068919_list = filter ((== 1) . a008966) a056868_list -- Reinhard Zumkeller, Jun 28 2013
Complement[Select[Range[206], SquareFreeQ[#] &], Select[Range[206], FiniteGroupCount[#] == 1 &]] (* Geoffrey Critzer, Nov 28 2015 *)
is(n)=issquarefree(n)&&gcd(n,eulerphi(n))!=1 \\ Jeppe Stig Nielsen, Sep 25 2017
Select[Range@ 2215, And[#[[All, -1]] == {1, 1}, Mod[#2, #1] == 3 & @@ #[[All, 1]]] &@ FactorInteger[#] &] (* Michael De Vlieger, Apr 12 2018 *)
isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 3); \\ Michel Marcus, Apr 16 2018
from sympy import factorint def is_A064901(n): f = factorint(n) return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 3) def first_A064901(n): x = 1 an = [] while len(an) < n: if is_A064901(x): an.append(x) x += 2 return an # John Cerkan, Apr 14 2018
Comments