cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A068198 Duplicate of A064899.

Original entry on oeis.org

6, 10, 14, 21, 22, 26, 34, 38, 39, 46, 55, 57, 58, 62, 74, 82, 86, 93, 94, 106, 111, 118
Offset: 1

Views

Author

Keywords

A064911 If n is semiprime (or 2-almost prime) then 1 else 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Patrick De Geest, Oct 13 2001

Keywords

Crossrefs

Programs

  • Haskell
    a064911 = a010051 . a032742 -- Reinhard Zumkeller, Mar 13 2011
    
  • Maple
    with(numtheory):
    a:= n-> `if`(bigomega(n)=2, 1, 0):
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 16 2011
  • Mathematica
    Table[If[PrimeOmega[n] == 2, 1, 0], {n, 105}] (* Jayanta Basu, May 25 2013 *)
  • PARI
    a(n)=bigomega(n)==2 \\ Charles R Greathouse IV, Mar 13 2011

Formula

a(n) = 1 iff n is in A001358 (semiprimes), a(n) = 0 iff n is in A100959 (non-semiprimes). - Reinhard Zumkeller, Nov 24 2004
Dirichlet g.f.: (primezeta(2s) + primezeta(s)^2)/2. - Franklin T. Adams-Watters, Jun 09 2006
a(n) = A057427(A174956(n)); a(n)*A072000(n) = A174956(n). - Reinhard Zumkeller, Apr 03 2010
a(n) = A010051(A032742(n)) (i.e., largest proper divisor is prime). - Reinhard Zumkeller, Mar 13 2011
From Antti Karttunen, Apr 24 2018 & Apr 22 2022: (Start)
a(n) = A280710(n) + A302048(n) = A101040(n) - A010051(n).
a(n) = A353478(n) + A353480(n) = A353477(n) + A353478(n) + A353479(n).
a(n) = A353475(n) + A353476(n).
(End)
a(n) = [Omega(n) = 2], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jul 22 2025

Extensions

Edited by M. F. Hasler, Oct 18 2017

A051532 The abelian orders (or abelian numbers): numbers m such that every group of order m is abelian.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 107, 109, 113, 115, 119, 121, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, 151, 153, 157, 159, 161
Offset: 1

Views

Author

Des MacHale, Dec 11 1999

Keywords

Comments

Except for a(2)=2 and a(4)=4, all of the terms in the sequence are odd. This is because of the existence of a non-abelian dihedral group of order 2m for each m > 2.
Cubefree terms of A056867; A212793(a(n)) = 1. - Reinhard Zumkeller, Jun 28 2013
See similar comment with "squarefree terms" in A003277 (Donald J. McCarthy link). - Bernard Schott, Feb 20 2023

Examples

			a(4) = 4 because every group of order 4 is abelian.
These two abelian groups of order 4 are the cyclic group C_4 and the Klein four-group = C_2 X C_2, the smallest non-cyclic abelian group. - _Bernard Schott_, Feb 21 2023
		

References

  • W. R. Scott, Group Theory, Dover, 1987, page 217.

Crossrefs

Subsequence of A056867 and supersequence of A003277.
Complement of A060652.
Intersection of A004709 and A056867.

Programs

  • Haskell
    a051532 n = a051532_list !! (n-1)
    a051532_list = filter ((== 1) . a212793) a056867_list
    -- Reinhard Zumkeller, Jun 28 2013
    
  • Mathematica
    okQ[n_] := Module[{f, lf, p, e, v}, f = FactorInteger[n]; lf = Length[f]; p = f[[All, 1]]; e = f[[All, 2]]; If[AnyTrue[e, # > 2&], Return[False]]; v = p^e; For[i = 1, i <= lf, i++, For[j = i+1, j <= lf, j++, If[Mod[v[[i]], p[[j]]]==1 || Mod[v[[j]], p[[i]]]==1, Return[False]]]]; Return[True]];
    Select[Range[200], okQ] (* Jean-François Alcover, May 03 2012, after PARI, updated Jan 10 2020 *)
  • PARI
    is(n)=my(f=factor(n),v=vector(#f[,1])); for(i=1,#v, if(f[i,2]>2, return(0), v[i]=f[i,1]^f[i,2])); for(i=1,#v, for(j=i+1,#v, if(v[i]%f[j,1]==1 || v[j]%f[i,1]==1, return(0)))); 1 \\ Charles R Greathouse IV, Feb 13 2011
    
  • Python
    from sympy import factorint
    def ok(n):
        if n == 1: return True
        f = factorint(n)
        p, e = f.keys(), f.values()
        if max(e) >= 3: return False
        return all((pi**k)%pj!=1 for pi in p for pj in p if pj!=pi for k in range(1, f[pi]+1))
    print([k for k in range(1, 162) if ok(k)]) # Michael S. Branicky, Feb 20 2023

Formula

m must be cubefree and its prime divisors must satisfy certain congruences.
Let the prime factorization of m be p1^e1 * ... * pr^er. Then m is in this sequence if ei < 3 for all i and pi^k is not congruent to 1 (mod pj) for all i and j and 1 <= k <= ei. - T. D. Noe, Mar 25 2007

A064910 Smallest semiprime p*q such that q >= p and q mod p = n.

Original entry on oeis.org

4, 6, 15, 65, 77, 133, 91, 319, 209, 341, 299, 481, 493, 799, 527, 1007, 1139, 2449, 703, 3611, 989, 1541, 1643, 3589, 1537, 2407, 2747, 2759, 1829, 3811, 1891, 4633, 2993, 3959, 2627, 4033, 2701, 6157, 3239, 9073, 3569, 5461, 4183, 6439, 5141, 6533
Offset: 0

Views

Author

Patrick De Geest, Oct 13 2001

Keywords

Crossrefs

Cf. A001358 (p2 mod p1 = 0), A064899-A064909, A064911, A053409, A046413.

Programs

  • Mathematica
    nsp[n_Integer] := nsp[n] = Block[{sp = n + 1}, While[PrimeOmega[sp] != 2, sp++]; sp]; a[n_Integer] := Block[{sp = 4}, While[ fi = FactorInteger@ sp; Mod[fi[[-1, 1]], fi[[1, 1]]] != n, sp = nsp[sp]]; sp]; Array[a, 46, 0] (* Robert G. Wilson v, Aug 20 2025 *)

Extensions

Name amended by John Cerkan, Apr 12 2018

A064900 Semiprimes p1*p2 such that p2 > p1 and p2 mod p1 = 2.

Original entry on oeis.org

15, 33, 35, 51, 69, 85, 87, 123, 141, 143, 159, 161, 177, 185, 213, 235, 249, 259, 267, 303, 321, 323, 335, 339, 393, 411, 447, 485, 501, 519, 533, 535, 537, 553, 573, 591, 635, 681, 685, 699, 717, 749, 753, 771, 785, 789, 807, 835, 843, 869, 871, 879, 899
Offset: 1

Views

Author

Patrick De Geest, Oct 13 2001

Keywords

Crossrefs

Cf. A001358 (p2 mod p1 = 0), A064899-A064911.

Programs

  • Mathematica
    okQ[n_] := Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; e == {1, 1} && Mod[p[[2]], p[[1]]] == 2]; Select[Range[1000], okQ]
    Select[Range[1000],PrimeOmega[#]==2&&Mod[FactorInteger[#][[;;,1]][[2]],FactorInteger[#][[;;,1]][[1]]]==2&]//Quiet (* Harvey P. Dale, Jan 09 2025 *)
  • PARI
    isok(n) = (bigomega(n)==2) && (f=factor(n)) && (#f~ == 2) && ((f[2,1] % f[1,1]) == 2); \\ Michel Marcus, May 20 2017

Extensions

Name clarified by Sean A. Irvine, Jul 31 2023

A069209 Orders of non-Abelian Z-groups.

Original entry on oeis.org

6, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 30, 34, 36, 38, 39, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 93, 94, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 116, 117, 118
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Apr 14 2002

Keywords

Comments

Z-groups are groups in which all Sylow subgroups are cyclic. n belongs to this sequence iff n is divisible by two distinct primes p and q, such that p divides q-1. This sequence contains sequence A064899 and it is a subsequence of sequence A056868.
Numbers n such that there is more than one Z-group of order n. - Eric M. Schmidt, Sep 15 2014

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,p,q; F:= numtheory:-factorset(n);
      for p in F do if member(1,map(`modp`,F,p)) then return true fi od:
      false
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Sep 15 2014
  • Mathematica
    filterQ[n_] := With[{pp = FactorInteger[n][[All, 1]]}, AnyTrue[pp, MemberQ[pp, q_ /; Divisible[q - 1, #]]&]];
    Select[Range[2, 200], filterQ] (* Jean-François Alcover, Jul 18 2020 *)
  • Sage
    def is_A069209(n) : return any((q-1)%p==0 for p,q in Combinations(prime_divisors(n),2)) # Eric M. Schmidt, Sep 15 2014

Extensions

Edited and extended by, and missing term 78 added by, Eric M. Schmidt, Sep 15 2014

A064909 Semiprimes p1*p2 such that p2 > p1 and p2 mod p1 = 11.

Original entry on oeis.org

481, 1157, 1343, 1921, 2171, 2263, 2369, 2509, 3077, 3097, 3427, 3523, 3683, 4171, 4537, 4541, 4811, 5213, 5263, 5389, 5543, 6107, 6227, 6707, 7123, 7241, 8279, 8593, 8621, 8717, 8857, 8873, 9353, 9607, 10411, 10537, 11359, 11461, 11567, 11747, 11761, 11819
Offset: 1

Views

Author

Patrick De Geest, Oct 13 2001

Keywords

Crossrefs

Cf. A001358 (p2 mod p1 = 0), A064899-A064911.

Programs

  • Mathematica
    pmp11Q[n_]:=Module[{fi=FactorInteger[n][[All,1]]},Mod[fi[[2]],fi[[1]]] == 11]; Select[ Range[12000],PrimeNu[#]==PrimeOmega[#]==2&&pmp11Q[#]&] (* Harvey P. Dale, Jun 25 2018 *)
  • PARI
    isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 11);
  • Python
    from sympy import factorint
    def is_A064909(n):
        f = factorint(n)
        return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 11)
    def first_A064909(n):
        x = 1
        an = []
        while len(an) < n:
            if is_A064909(x): an.append(x)
            x += 2
        return an # John Cerkan, Apr 14 2018
    

Extensions

Offset and name fixed by John Cerkan, Apr 12 2018

A350586 Numbers m with exactly 2 groups of order m, where one is abelian and the other is nonabelian.

Original entry on oeis.org

6, 10, 14, 21, 22, 26, 34, 38, 39, 46, 55, 57, 58, 62, 74, 82, 86, 93, 94, 105, 106, 111, 118, 122, 129, 134, 142, 146, 155, 158, 165, 166, 178, 183, 194, 195, 201, 202, 203, 205, 206, 214, 218, 219, 226, 231, 237, 253, 254, 262, 274, 278, 285, 291, 298, 301, 302
Offset: 1

Views

Author

Bernard Schott, Jan 07 2022

Keywords

Comments

Differs from A064899 that is a subsequence: a(20) = 105 while A064899(20) = 106.
When m = 2*p, p odd prime, abelian group is C_{2*p} and nonabelian group is D_{2*p} ~ C_p : C_2.
When m = p*q, p
In both cases, C, D mean cyclic, dihedral groups of the stated order; the symbols ~ and : mean isomorphic to and semidirect product respectively.
A number m is a term iff m is squarefree and m has exactly one pair of prime factors (p, q) such that q == 1 (mod p). - David Radcliffe, Jul 30 2025

Examples

			There is only one group of order 1, 2, 3, 5 and the two groups of order 4 are abelian; hence 6 is the smallest term because the two groups of order 6 are the abelian and cyclic group C_6, while the nonabelian group is the symmetric group S_3 isomorphic to dihedral group D_6.
The smallest odd term is 21, the two corresponding groups are C_21 and semi-direct product C_7 : C_3.
The smallest term of the form p*q*r, p < q < r primes, is 105, the two corresponding groups are C_105 and semi-direct product C_35 : C_3.
		

Crossrefs

Equals A054395 \ A350322.
Subsequence of A060650 and of A005117.

Programs

  • PARI
    is(n,f=factor(n))=my(p=f[,1],s); if(#p && vecmax(f[,2])>1, return(0)); for(i=2,#p, for(j=1,i-1, if(p[i]%p[j]==1 && s++>1, return(0)))); s==1 \\ Charles R Greathouse IV, Jan 08 2022
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=6,lim\1, my(p=n[2][,1],s); for(i=2,#p, for(j=1,i-1, if(p[i]%p[j]==1 && s++>1, next(3)))); if(s==1, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2022
    
  • Python
    from sympy import factorint
    def is_ok(m):
        f = factorint(m)
        if any(e > 1 for e in f.values()): return False # m must be squarefree
        return sum(q % p == 1 for p in f for q in f) == 1 # David Radcliffe, Jul 30 2025

Extensions

More terms from Jinyuan Wang, Jan 08 2022

A068919 Squarefree orders of non-Abelian groups.

Original entry on oeis.org

6, 10, 14, 21, 22, 26, 30, 34, 38, 39, 42, 46, 55, 57, 58, 62, 66, 70, 74, 78, 82, 86, 93, 94, 102, 105, 106, 110, 111, 114, 118, 122, 129, 130, 134, 138, 142, 146, 154, 155, 158, 165, 166, 170, 174, 178, 182, 183, 186, 190, 194, 195, 201, 202, 203, 205, 206
Offset: 1

Author

Sharon Sela (sharonsela(AT)hotmail.com), Mar 29 2002

Keywords

Comments

This set is the difference A005117 \ A003277, that is, the squarefree numbers that are not cyclic (A003277). - Jeppe Stig Nielsen, Sep 25 2017

Crossrefs

Intersection of A060652 and A005117.
Cf. A064899.
Also intersection of A056868 and A005117. - Reinhard Zumkeller, Jun 28 2013
Cf. A008966.

Programs

  • Haskell
    a068919 n = a068919_list !! (n-1)
    a068919_list = filter ((== 1) . a008966) a056868_list
    -- Reinhard Zumkeller, Jun 28 2013
    
  • Mathematica
    Complement[Select[Range[206], SquareFreeQ[#] &],
    Select[Range[206], FiniteGroupCount[#] == 1 &]] (* Geoffrey Critzer, Nov 28 2015 *)
  • PARI
    is(n)=issquarefree(n)&&gcd(n,eulerphi(n))!=1 \\ Jeppe Stig Nielsen, Sep 25 2017

A064901 Semiprimes p1*p2 such that p2 > p1 and p2 mod p1 = 3.

Original entry on oeis.org

65, 115, 119, 215, 217, 265, 365, 377, 413, 415, 511, 515, 517, 565, 629, 707, 779, 815, 865, 965, 1099, 1115, 1165, 1207, 1243, 1315, 1391, 1393, 1415, 1465, 1501, 1565, 1589, 1687, 1727, 1765, 1769, 1865, 1883, 1915, 1969, 1981, 2165, 2177, 2215
Offset: 1

Author

Patrick De Geest, Oct 13 2001

Keywords

Comments

The semiprimes must be squarefree, since p1 does not divide p2. - Michael De Vlieger, Apr 12 2018

Crossrefs

Cf. A001358 (p2 mod p1 = 0), A006881, A064899-A064911.

Programs

  • Mathematica
    Select[Range@ 2215, And[#[[All, -1]] == {1, 1}, Mod[#2, #1] == 3 & @@ #[[All, 1]]] &@ FactorInteger[#] &] (* Michael De Vlieger, Apr 12 2018 *)
  • PARI
    isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 3); \\ Michel Marcus, Apr 16 2018
  • Python
    from sympy import factorint
    def is_A064901(n):
        f = factorint(n)
        return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 3)
    def first_A064901(n):
        x = 1
        an = []
        while len(an) < n:
            if is_A064901(x): an.append(x)
            x += 2
        return an # John Cerkan, Apr 14 2018
    

Extensions

Name clarified by John Cerkan, Apr 13 2018
Showing 1-10 of 17 results. Next