cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A005596 Decimal expansion of Artin's constant Product_{p=prime} (1-1/(p^2-p)).

Original entry on oeis.org

3, 7, 3, 9, 5, 5, 8, 1, 3, 6, 1, 9, 2, 0, 2, 2, 8, 8, 0, 5, 4, 7, 2, 8, 0, 5, 4, 3, 4, 6, 4, 1, 6, 4, 1, 5, 1, 1, 1, 6, 2, 9, 2, 4, 8, 6, 0, 6, 1, 5, 0, 0, 4, 2, 0, 9, 4, 7, 4, 2, 8, 0, 2, 4, 1, 7, 3, 5, 0, 1, 8, 2, 0, 4, 0, 0, 2, 8, 0, 8, 2, 3, 4, 4, 3, 0, 4, 3, 1, 7, 0, 8, 7, 2, 5, 0, 5, 6, 8, 9, 8, 1, 6, 0, 3
Offset: 0

Views

Author

Keywords

Comments

On Simon Plouffe's web page (and in the book freely available at Gutenberg project) the value is given with an error of +1e-31, as "...651641..." instead of "...641641...". In the reference [Wrench, 1961] cited there, these digits are correct. They are also correct on the Plouffe's Inverter page, as computed by Oliveira e Silva, who comments it took 1 hour at 200 MHz with Mathematica. Using Amiram Eldar's PARI program, the same 500 digits are computed instantly (less than 0.1 sec). - M. F. Hasler, Apr 20 2021
Named after the Austrian mathematician Emil Artin (1898-1962). - Amiram Eldar, Jun 20 2021

Examples

			0.37395581361920228805472805434641641511162924860615...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 169.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a = Exp[-NSum[ (LucasL[n] - 1)/n PrimeZetaP[n], {n, 2, Infinity}, PrecisionGoal -> 500, WorkingPrecision -> 500, NSumTerms -> 100000]]; RealDigits[a, 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 taken from Mathematica's Help file on PrimeZetaP *)
  • PARI
    prodinf(n=2,1/zeta(n)^(sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1)))/n)) \\ Charles R Greathouse IV, Aug 27 2014
    
  • PARI
    prodeulerrat(1-1/(p^2-p)) \\ Amiram Eldar, Mar 12 2021

Formula

Equals Product_{j>=2} 1/Zeta(j)^A006206(j), where Zeta = A013661, A002117 etc. is Riemann's zeta function. - R. J. Mathar, Feb 14 2009
Equals Sum_{k>=1} mu(k)/(k*phi(k)), where mu is the Moebius function (A008683) and phi is the Euler totient function (A000010). - Amiram Eldar, Mar 11 2020
Equals 1/A065488. - Vaclav Kotesovec, Jul 17 2021

Extensions

More terms from Tomás Oliveira e Silva (http://www.ieeta.pt/~tos)

A001609 a(1) = a(2) = 1, a(3) = 4; thereafter a(n) = a(n-1) + a(n-3).

Original entry on oeis.org

1, 1, 4, 5, 6, 10, 15, 21, 31, 46, 67, 98, 144, 211, 309, 453, 664, 973, 1426, 2090, 3063, 4489, 6579, 9642, 14131, 20710, 30352, 44483, 65193, 95545, 140028, 205221, 300766, 440794, 646015, 946781, 1387575, 2033590, 2980371, 4367946, 6401536, 9381907
Offset: 1

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m + 1. The generating function is (x + m*x^m)/(1 - x - x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364.
The sequence defined by {a(n) - 1} plays a role for the computation of A065414, A146486, A146487, and A146488 equivalent to the role of A001610 for A005596, A146482, A146483 and A146484, see the variable a_{2,n} in arXiv:0903.2514. - R. J. Mathar, Mar 28 2009
Except for n = 2, a(n) is the number of digits in n-th term of A049064. This can be derived form the T. Sillke link below. - Jianing Song, Apr 28 2019

Examples

			G.f. = x + x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 15*x^7 + 21*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,1,4]; [n le 3 select I[n] else Self(n-1)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Jun 28 2015
  • Maple
    A001609:=-(1+3*z**2)/(-1+z+z**3); # Simon Plouffe in his 1992 dissertation
    f:= gfun:-rectoproc({a(n) = a(n-1) + a(n-3), a(1)=1,a(2)=1,a(3)=4},a(n),remember):
    map(f, [$1..100]); # Robert Israel, Jun 29 2015
  • Mathematica
    Table[Tr[MatrixPower[{{0, 0, 1}, {1, 0, 0}, {0, 1, 1}}, n]], {n, 1, 60}] (* Artur Jasinski, Jan 10 2007 *)
    Table[ HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -(n/3)}, {1/2 - n/2, 1 - n/2}, -(27/4)], {n, 20}] (* Alexander R. Povolotsky, Nov 21 2008 *)
    a[1] = a[2] = 1; a[3] = 4; m = 3; a[n_] := 1 + n*Sum [Binomial [n - 1 - (m - 1)*i, i - 1]/i, {i, n/m}] A001609 = Table[a[n], {n, 100}] (* Zak Seidov, Nov 21 2008 *)
    LinearRecurrence[{1, 0, 1}, {1, 1, 4}, 50] (* Vincenzo Librandi, Jun 28 2015 *)
  • PARI
    {a(n) = if( n<1, n=-n; polcoeff( (3 + x^2) / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( x * (1 + 3*x^2) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Aug 15 2016 */
    

Formula

G.f.: x*(1 + 3*x^2)/(1 - x - x^3).
a(n) = trace of successive powers of matrix ({{0,0,1},{1,0,0},{0,1,1}})^n. - Artur Jasinski, Jan 10 2007
a(n) = A000930(n) + 3*A000930(n-2). - R. J. Mathar, Nov 16 2007
Logarithmic derivative of Narayana's cows sequence A000930. - Paul D. Hanna, Oct 28 2012
a(n) = w1^n + w2^n + w3^n, where w1,w2,w3 are the roots of the cubic: (-1 - x^2 + x^3), see A092526. - Gerry Martens, Jun 27 2015

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
More terms from Michael Somos, Oct 03 2002
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A089189 Primes p such that p-1 is cubefree.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 127, 131, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 239, 263, 269, 277, 283, 293, 307, 311, 317, 331, 347, 349, 359, 367, 373, 383
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003 and Reinhard Zumkeller, Aug 11 2004

Keywords

Comments

The ratio of the count of primes p <= n such that p-1 is cubefree to the count of primes <= n converges to 0.69.. . This implies that roughly 70% of the primes less one are cubefree. This compares to about 0.37 of the primes less one are squarefree.
More accurately, the density of this sequence within the primes is Product_{p prime} (1-1/(p^2*(p-1))) = 0.697501... (A065414) (Mirsky, 1949). - Amiram Eldar, Feb 16 2021

Examples

			43 is included because 43-1 = 2*3*7.
41 is omitted because 41-1 = 2^3*5.
97 is omitted because 96 = 2^5*3 since higher powers are also tested for exclusion.
		

Crossrefs

Cf. A004709, A039787, A065414, A097380, A089194 (subsequence).

Programs

  • Haskell
    a097375 n = a097375_list !! (n-1)
    a097375_list = filter ((== 1) . a212793 . (subtract 1)) a000040_list
    -- Reinhard Zumkeller, May 27 2012
    
  • Maple
    filter:= p -> isprime(p) and max(seq(t[2],t=ifactors(p-1)[2]))<=2:
    select(filter, [2,seq(2*i+1,i=1..1000)]); # Robert Israel, Sep 11 2014
  • Mathematica
    f[n_]:=Module[{a=m=0},Do[If[FactorInteger[n][[m,2]]>2,a=1],{m,Length[FactorInteger[n]]}];a]; lst={};Do[p=Prime[n];If[f[p-1]==0,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 15 2009 *)
    Select[Prime[Range[100]],Max[Transpose[FactorInteger[#-1]][[2]]]<3&] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    lista(nn) = forprime(p=2, nn, f = factor(p-1)[,2]; if ((#f == 0) || vecmax(f) < 3, print1(p, ", "));) \\ Michel Marcus, Sep 11 2014

Formula

A212793(a(n) - 1) = 1. - Reinhard Zumkeller, May 27 2012

Extensions

Corrected and extended by Harvey P. Dale, Feb 05 2012

A065415 Decimal expansion of Product_{p prime} (1-1/(p^4-p^3)).

Original entry on oeis.org

8, 5, 6, 5, 4, 0, 4, 4, 4, 8, 5, 3, 5, 4, 2, 1, 7, 4, 4, 2, 6, 1, 6, 7, 9, 8, 4, 1, 3, 5, 9, 5, 3, 8, 8, 2, 1, 6, 6, 5, 7, 2, 8, 0, 0, 3, 1, 7, 6, 5, 2, 1, 4, 0, 3, 2, 5, 4, 8, 3, 2, 1, 6, 1, 6, 9, 4, 3, 1, 4, 4, 9, 8, 0, 3, 5, 9, 8, 9, 6, 3, 9, 2, 8, 3, 2, 3, 1, 1, 3, 0, 8, 2, 5, 9, 2, 0, 7, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Examples

			0.85654044485354217442616798413595388...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 99; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s]; LR = LinearRecurrence[{2, -1, 0, 1, -1}, {0, 0, 0, 4, 5, 6}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 3, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-1/(p^4-p^3)) \\ Amiram Eldar, Mar 13 2021

A065416 Decimal expansion of Product_{p prime} (1-1/(p^5-p^4)).

Original entry on oeis.org

9, 3, 1, 2, 6, 5, 1, 8, 4, 1, 6, 0, 0, 0, 4, 3, 3, 4, 3, 8, 9, 2, 3, 7, 2, 0, 5, 5, 5, 0, 6, 7, 6, 9, 8, 2, 5, 5, 8, 4, 2, 3, 7, 3, 4, 5, 8, 7, 8, 0, 1, 0, 5, 9, 0, 1, 6, 9, 8, 7, 7, 1, 5, 4, 5, 9, 5, 4, 3, 3, 6, 0, 2, 8, 6, 8, 2, 3, 8, 5, 1, 5, 8, 2, 5, 1, 2, 8, 9, 6, 4, 8, 1, 0, 8, 9, 5, 1, 5
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Examples

			0.93126518416000433438923720555067698...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 99; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s]; LR = LinearRecurrence[{2, -1, 0, 0, 1, -1}, {0, 0, 0, 0, 5, 6}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 5, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-1/(p^5-p^4)) \\ Amiram Eldar, Mar 12 2021

A135177 a(n) = p^2*(p-1), where p = prime(n).

Original entry on oeis.org

4, 18, 100, 294, 1210, 2028, 4624, 6498, 11638, 23548, 28830, 49284, 67240, 77658, 101614, 146068, 201898, 223260, 296274, 352870, 383688, 486798, 564898, 697048, 903264, 1020100, 1082118, 1213594, 1283148, 1430128, 2032254, 2230930
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4) = 294 because the 4th prime number is 7, 7^2 = 49, 7-1 = 6 and 49 * 6 = 294.
		

Crossrefs

Cf. A001248 (p^2), A030078 (p^3), A045991 (n^2 * (n-1)), A065414, A065483, A138416 (terms halved), A152441.
Column 4 of A379010.

Programs

Formula

a(n) = p^3 - p^2 = A030078(n) - A001248(n).
a(n) = A000010(prime(n)^3). - R. J. Mathar, Oct 15 2017
Sum_{n>=1} 1/a(n) = A152441. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Nov 22 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065483.
Product_{n>=1} (1 - 1/a(n)) = A065414. (End)
a(n) = 2*A138416(n). - Antti Karttunen, Dec 14 2024

A089199 Primes p such that p+1 is divisible by a cube.

Original entry on oeis.org

7, 23, 31, 47, 53, 71, 79, 103, 107, 127, 151, 167, 191, 199, 223, 239, 263, 269, 271, 311, 359, 367, 383, 431, 439, 463, 479, 487, 499, 503, 593, 599, 607, 631, 647, 701, 719, 727, 743, 751, 809, 823, 839, 863, 887, 911, 919, 967, 971, 983, 991
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Comments

This sequence is infinite and its relative density in the sequence of primes is equal to 1 - Product_{p prime} (1-1/(p^2*(p-1))) = 1 - A065414 = 0.302498... (Mirsky, 1949). - Amiram Eldar, Apr 07 2021

Crossrefs

Includes A007522 and A141965.

Programs

  • Maple
    filter:= proc(p)
      isprime(p) and ormap(t -> t[2]>=3, ifactors(p+1)[2])
    end proc:
    select(filter, [seq(i,i=3..2000,2)]); # Robert Israel, Jan 11 2019
  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p+1]>=3,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
  • PARI
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) }
    powerfreep3(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(ispowerfree(x+k,p)==0, c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }

A089200 Primes p such that p-1 is divisible by a cube.

Original entry on oeis.org

17, 41, 73, 89, 97, 109, 113, 137, 163, 193, 233, 241, 251, 257, 271, 281, 313, 337, 353, 379, 401, 409, 433, 449, 457, 487, 521, 541, 569, 577, 593, 601, 617, 641, 673, 751, 757, 761, 769, 809, 811, 857, 881, 919, 929, 937, 953, 977
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Comments

This sequence is infinite and its relative density in the sequence of primes is 1 - Product_{p prime} (1-1/(p^2*(p-1))) = 1 - A065414 = 0.30249864150363409671... (Jakimczuk, 2024). - Amiram Eldar, Jul 20 2024

Crossrefs

Programs

  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=3,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
    Select[Prime[Range[200]],Count[Transpose[FactorInteger[#-1]][[2]], ?(#>2&)]>0&] (* _Harvey P. Dale, Jan 01 2012 *)
  • PARI
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) }
    powerfreep3(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(ispowerfree(x+k,p)==0, c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }

A065417 Exponents in expansion of rank-2 Artin constant product(1-1/(p^3-p^2), p=prime) as a product zeta(n)^(-a(n)).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 11, 14, 20, 27, 39, 52, 75, 102, 145, 201, 286, 397, 565, 791, 1123, 1581, 2248, 3173, 4517, 6399, 9112, 12945, 18457, 26270, 37502, 53478, 76416, 109146, 156135, 223301, 319764, 457884, 656288, 940795, 1349671, 1936620
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Comments

Inverse Euler transform of A078012. (The inverse of 1-1/(p^3-p^2) is p^2(p-1)/(p^3-p^2-1) = 1-1/(1+p^2-p^3). Setting 1/p=x gives (1-x)/(1-x-x^3), the g.f. of A078012.) - R. J. Mathar, Jul 26 2010

Examples

			x^3 + x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 6*x^11 + 7*x^12 + ...
		

Crossrefs

Cf. A065414.

Programs

  • Maple
    read("transforms") ;
    A078012 := proc(n) option remember; if n <3 then op(n+1,[1,0,0]) ; else procname(n-1)+procname(n-3) ; end if; end proc:
    a078012 := [seq(A078012(n),n=1..80)] ; EULERi(%) ;
    # R. J. Mathar, Jul 26 2010
  • Mathematica
    A078012[n_] := A078012[n] = If[n<3, {1, 0, 0}[[n+1]], A078012[n-1] + A078012[n-3]]; a078012 = Array[A078012, m = 80];
    s = {}; For[i = 1, i <= m, i++, AppendTo[s, i*a078012[[i]] - Sum[s[[d]] * a078012[[i-d]], {d, i-1}]]]; Table[Sum[If[Divisible[i, d], MoebiusMu[i/d ], 0]*s[[d]], {d, 1, i}]/i, {i, m}] (* Jean-François Alcover, Apr 15 2016, after R. J. Mathar *)

Formula

a(n) ~ r^n / n, where r = A092526 = 1.465571231876768... - Vaclav Kotesovec, Jun 13 2020

Extensions

More terms from R. J. Mathar, Jul 26 2010

A089191 Primes p such that p+1 is cubefree.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 59, 61, 67, 73, 83, 89, 97, 101, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 233, 241, 251, 257, 277, 281, 283, 293, 307, 313, 317, 331, 337, 347, 349, 353, 373, 379, 389, 397, 401, 409
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Comments

The ratio of the count of primes p <= n such that p+1 is cubefree to the count of primes <= n converges to 0.69+ slightly higher than the p-1 variety.
More accurately, the density of this sequence within the primes is Product_{p prime} (1-1/(p^2*(p-1))) = 0.697501... (A065414) (Mirsky, 1949). - Amiram Eldar, Feb 16 2021

Examples

			43 is included because 43+1 = 2^2*11.
71 is omitted because 71+1 = 2^3*3^2.
		

Crossrefs

Programs

  • Maple
    filter:= t -> isprime(t) and max(map(s -> s[2], ifactors(t+1)[2]))<3:
    select(filter, [2,seq(i,i=3..1000,2)]); # Robert Israel, Mar 18 2018
  • Mathematica
    Select[Prime[Range[100]],Max[Transpose[FactorInteger[#+1]][[2]]]<3&] (* Harvey P. Dale, Jun 06 2013 *)
  • PARI
    is(n) = isprime(n) && vecmax(factor(n+1)[,2]) < 3 \\ Amiram Eldar, Feb 16 2021
Showing 1-10 of 18 results. Next