cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A264994 Bijective base-4 reverse: a(0) = 0; for n >= 1, a(n) = A030103(A065883(n)) * A234957(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 9, 13, 8, 6, 10, 14, 12, 7, 11, 15, 16, 17, 33, 49, 20, 21, 37, 53, 36, 25, 41, 57, 52, 29, 45, 61, 32, 18, 34, 50, 24, 22, 38, 54, 40, 26, 42, 58, 56, 30, 46, 62, 48, 19, 35, 51, 28, 23, 39, 55, 44, 27, 43, 59, 60, 31, 47, 63, 64, 65, 129, 193, 68, 81, 145, 209, 132, 97, 161, 225, 196, 113, 177, 241, 80, 69
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Self-inverse permutation of nonnegative integers.

Crossrefs

Cf. A264993 (a(3n)/3), A265335 (a(5n)/5).
Cf. also A057889 (base-2), A263273 (base-3), A264995 (base-5), A264979 (base-9).

Programs

Formula

a(0) = 0; for n >= 1, a(n) = A030103(A065883(n)) * A234957(n).
Other identities. For all n >= 0:
a(4*n) = 4*a(n).

A035263 Trajectory of 1 under the morphism 0 -> 11, 1 -> 10; parity of 2-adic valuation of 2n: a(n) = A000035(A001511(n)).

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Keywords

Comments

First Feigenbaum symbolic (or period-doubling) sequence, corresponding to the accumulation point of the 2^{k} cycles through successive bifurcations.
To construct the sequence: start with 1 and concatenate: 1,1, then change the last term (1->0; 0->1) gives: 1,0. Concatenate those 2 terms: 1,0,1,0, change the last term: 1,0,1,1. Concatenate those 4 terms: 1,0,1,1,1,0,1,1 change the last term: 1,0,1,1,1,0,1,0, etc. - Benoit Cloitre, Dec 17 2002
Let T denote the present sequence. Here is another way to construct T. Start with the sequence S = 1,0,1,,1,0,1,,1,0,1,,1,0,1,,... and fill in the successive holes with the successive terms of the sequence T (from paper by Allouche et al.). - Emeric Deutsch, Jan 08 2003 [Note that if we fill in the holes with the terms of S itself, we get A141260. - N. J. A. Sloane, Jan 14 2009]
From N. J. A. Sloane, Feb 27 2009: (Start)
In more detail: define S to be 1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1,0,1___...
If we fill the holes with S we get A141260:
1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0,
........1.........0.........1.........1.........0.......1.........1.........0...
- the result is
1..0..1.1.1..0..1.0.1..0..1.1.1..0..1.1.1..0..1.0.1.... = A141260.
But instead, if we define T recursively by filling the holes in S with the terms of T itself, we get A035263:
1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0,
........1.........0.........1.........1.........1.......0.........1.........0...
- the result is
1..0..1.1.1..0..1.0.1..0..1.1.1..0..1.1.1..0..1.1.1.0.1.0.1..0..1.1.1..0..1.0.1.. = A035263. (End)
Characteristic function of A003159, i.e., A035263(n)=1 if n is in A003159 and A035263(n)=0 otherwise (from paper by Allouche et al.). - Emeric Deutsch, Jan 15 2003
This is the sequence of R (=1), L (=0) moves in the Towers of Hanoi puzzle: R, L, R, R, R, L, R, L, R, L, R, R, R, ... - Gary W. Adamson, Sep 21 2003
Manfred Schroeder, p. 279 states, "... the kneading sequences for unimodal maps in the binary notation, 0, 1, 0, 1, 1, 1, 0, 1..., are obtained from the Morse-Thue sequence by taking sums mod 2 of adjacent elements." On p. 278, in the chapter "Self-Similarity in the Logistic Parabola", he writes, "Is there a closer connection between the Morse-Thue sequence and the symbolic dynamics of the superstable orbits? There is indeed. To see this, let us replace R by 1 and C and L by 0." - Gary W. Adamson, Sep 21 2003
Partial sums modulo 2 of the sequence 1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), a(6), ... . - Philippe Deléham, Jan 02 2004
Parity of A007913, A065882 and A065883. - Philippe Deléham, Mar 28 2004
The length of n-th run of 1's in this sequence is A080426(n). - Philippe Deléham, Apr 19 2004
Also parity of A005043, A005773, A026378, A104455, A117641. - Philippe Deléham, Apr 28 2007
Equals parity of the Towers of Hanoi, or ruler sequence (A001511), where the Towers of Hanoi sequence (1, 2, 1, 3, 1, 2, 1, 4, ...) denotes the disc moved, labeled (1, 2, 3, ...) starting from the top; and the parity of (1, 2, 1, 3, ...) denotes the direction of the move, CW or CCW. The frequency of CW moves converges to 2/3. - Gary W. Adamson, May 11 2007
A conjectured identity relating to the partition sequence, A000041: p(x) = A(x) * A(x^2) when A(x) = the Euler transform of A035263 = polcoeff A174065: (1 + x + x^2 + 2x^3 + 3x^4 + 4x^5 + ...). - Gary W. Adamson, Mar 21 2010
a(n) is 1 if the number of trailing zeros in the binary representation of n is even. - Ralf Stephan, Aug 22 2013
From Gary W. Adamson, Mar 25 2015: (Start)
A conjectured identity relating to the partition sequence, A000041 as polcoeff p(x); A003159, and its characteristic function A035263: (1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, ...); and A036554 indicating n-th terms with zeros in A035263: (2, 6, 8, 10, 14, 18, 22, ...).
The conjecture states that p(x) = A(x) = A(x^2) when A(x) = polcoeffA174065 = the Euler transform of A035263 = 1/(1-x)*(1-x^3)*(1-x^4)*(1-x^5)*... = (1 + x + x^2 + 2x^3 + 3x^4 + 4x^5 + ...) and the aerated variant = the Euler transform of the complement of A035263: 1/(1-x^2)*(1-x^6)*(1-x^8)*... = (1 + x^2 + x^4 + 2x^6 + 3x^8 + 4x^10 + ...).
(End)
The conjecture above was proved by Jean-Paul Allouche on Dec 21 2013.
Regarded as a column vector, this sequence is the product of A047999 (Sierpinski's gasket) regarded as an infinite lower triangular matrix and A036497 (the Fredholm-Rueppel sequence) where the 1's have alternating signs, 1, -1, 0, 1, 0, 0, 0, -1, .... - Gary W. Adamson, Jun 02 2021
The numbers of 1's through n (A050292) can be determined by starting with the binary (say for 19 = 1 0 0 1 1) and writing: next term is twice current term if 0, otherwise twice plus 1. The result is 1, 2, 4, 9, 19. Take the difference row, = 1, 1, 2, 5, 10; and add the odd-indexed terms from the right: 5, 4, 3, 2, 1 = 10 + 2 + 1 = 13. The algorithm is the basis for determining the disc configurations in the tower of Hanoi game, as shown in the Jul 24 2021 comment of A060572. - Gary W. Adamson, Jul 28 2021

References

  • Karamanos, Kostas. "From symbolic dynamics to a digital approach." International Journal of Bifurcation and Chaos 11.06 (2001): 1683-1694. (Full version. See p. 1685)
  • Karamanos, K. (2000). From symbolic dynamics to a digital approach: chaos and transcendence. In Michel Planat (Ed.), Noise, Oscillators and Algebraic Randomness (Lecture Notes in Physics, pp. 357-371). Springer, Berlin, Heidelberg. (Short version. See p. 359)
  • Manfred R. Schroeder, "Fractals, Chaos, Power Laws", W. H. Freeman, 1991
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 892, column 2, Note on p. 84, part (a).

Crossrefs

Parity of A001511. Anti-parity of A007814.
Absolute values of first differences of A010060. Apart from signs, same as A029883. Essentially the same as A056832.
Swapping 0 and 1 gives A096268.
Cf. A033485, A050292 (partial sums), A089608, A088172, A019300, A039982, A073675, A121701, A141260, A000041, A174065, A220466, A154269 (Mobius transform).
Limit of A317957(n) for large n.

Programs

  • Haskell
    import Data.Bits (xor)
    a035263 n = a035263_list !! (n-1)
    a035263_list = zipWith xor a010060_list $ tail a010060_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Maple
    nmax:=105: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (p+1) mod 2 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 07 2013
    A035263 := n -> 1 - padic[ordp](n, 2) mod 2:
    seq(A035263(n), n=1..105); # Peter Luschny, Oct 02 2018
  • Mathematica
    a[n_] := a[n] = If[ EvenQ[n], 1 - a[n/2], 1]; Table[ a[n], {n, 1, 105}] (* Or *)
    Rest[ CoefficientList[ Series[ Sum[ x^(2^k)/(1 + (-1)^k*x^(2^k)), {k, 0, 20}], {x, 0, 105}], x]]
    f[1] := True; f[x_] := Xor[f[x - 1], f[Floor[x/2]]]; a[x_] := Boole[f[x]] (* Ben Branman, Oct 04 2010 *)
    a[n_] := If[n == 0, 0, 1 - Mod[ IntegerExponent[n, 2], 2]]; (* Jean-François Alcover, Jul 19 2013, after Michael Somos *)
    Nest[ Flatten[# /. {0 -> {1, 1}, 1 -> {1, 0}}] &, {0}, 7] (* Robert G. Wilson v, Jul 23 2014 *)
    SubstitutionSystem[{0->{1,1},1->{1,0}},1,{7}][[1]] (* Harvey P. Dale, Jun 06 2022 *)
  • PARI
    {a(n) = if( n==0, 0, 1 - valuation(n, 2)%2)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    {a(n) = if( n==0, 0, n = abs(n); subst( Pol(binary(n)) - Pol(binary(n-1)), x, 1)%2)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    {a(n) = if( n==0, 0, n = abs(n); direuler(p=2, n, 1 / (1 - X^((p<3) + 1)))[n])}; /* Michael Somos, Sep 04 2006 */
    
  • Python
    def A035263(n): return (n&-n).bit_length()&1 # Chai Wah Wu, Jan 09 2023
  • Scheme
    (define (A035263 n) (let loop ((n n) (i 1)) (cond ((odd? n) (modulo i 2)) (else (loop (/ n 2) (+ 1 i)))))) ;; (Use mod instead of modulo in R6RS) Antti Karttunen, Sep 11 2017
    

Formula

Absolute values of first differences (A029883) of Thue-Morse sequence (A001285 or A010060). Self-similar under 10->1 and 11->0.
Series expansion: (1/x) * Sum_{i>=0} (-1)^(i+1)*x^(2^i)/(x^(2^i)-1). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 17 2003
a(n) = Sum_{k>=0} (-1)^k*(floor((n+1)/2^k)-floor(n/2^k)). - Benoit Cloitre, Jun 03 2003
Another g.f.: Sum_{k>=0} x^(2^k)/(1+(-1)^k*x^(2^k)). - Ralf Stephan, Jun 13 2003
a(2*n) = 1-a(n), a(2*n+1) = 1. - Ralf Stephan, Jun 13 2003
a(n) = parity of A033485(n). - Philippe Deléham, Aug 13 2003
Equals A088172 mod 2, where A088172 = 1, 2, 3, 7, 13, 26, 53, 106, 211, 422, 845, ... (first differences of A019300). - Gary W. Adamson, Sep 21 2003
a(n) = a(n-1) - (-1)^n*a(floor(n/2)). - Benoit Cloitre, Dec 02 2003
a(1) = 1 and a(n) = abs(a(n-1) - a(floor(n/2))). - Benoit Cloitre, Dec 02 2003
a(n) = 1 - A096268(n+1); A050292 gives partial sums. - Reinhard Zumkeller, Aug 16 2006
Multiplicative with a(2^k) = 1 - (k mod 2), a(p^k) = 1, p > 2. Dirichlet g.f.: Product_{n = 4 or an odd prime} (1/(1-1/n^s)). - Christian G. Bower, May 18 2005
a(-n) = a(n). a(0)=0. - Michael Somos, Sep 04 2006
Dirichlet g.f.: zeta(s)*2^s/(2^s+1). - Ralf Stephan, Jun 17 2007
a(n+1) = a(n) XOR a(ceiling(n/2)), a(1) = 1. - Reinhard Zumkeller, Jun 11 2009
Let D(x) be the generating function, then D(x) + D(x^2) == x/(1-x). - Joerg Arndt, May 11 2010
a(n) = A010060(n) XOR A010060(n+1); a(A079523(n)) = 0; a(A121539(n)) = 1. - Reinhard Zumkeller, Mar 01 2012
a((2*n-1)*2^p) = (p+1) mod 2, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 07 2013
a(n) = A000035(A001511(n)). - Omar E. Pol, Oct 29 2013
a(n) = 2-A056832(n) = (5-A089608(n))/4. - Antti Karttunen, Sep 11 2017, after Benoit Cloitre
For n >= 0, a(n+1) = M(2n) mod 2 where M(n) is the Motzkin number A001006 (see Deutsch and Sagan 2006 link). - David Callan, Oct 02 2018
a(n) = A038712(n) mod 3. - Kevin Ryde, Jul 11 2019
Given any n in the form (k * 2^m, k odd), extract k and m. Categorize the results into two outcomes of (k, m, even or odd). If (k, m) is (odd, even) substitute 1. If (odd, odd), denote the result 0. Example: 5 = (5 * 2^0), (odd, even, = 1). (6 = 3 * 2^1), (odd, odd, = 0). - Gary W. Adamson, Jun 23 2021

Extensions

Alternative description added to the name by Antti Karttunen, Sep 11 2017

A000378 Sums of three squares: numbers of the form x^2 + y^2 + z^2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83
Offset: 1

Views

Author

Keywords

Comments

An equivalent definition: numbers of the form x^2 + y^2 + z^2 with x,y,z >= 0.
Bourgain studies "the spatial distribution of the representation of a large integer as a sum of three squares, on the small and critical scale as well as their electrostatic energy. The main results announced give strong evidence to the thesis that the solutions behave randomly. This is in sharp contrast to what happens with sums of two or four or more square." Sums of two nonzero squares are A000404. - Jonathan Vos Post, Apr 03 2012
The multiplicities for a(n) (if 0 <= x <= y <= z) are given as A000164(a(n)), n >= 1. Compare with A005875(a(n)) for integer x, y and z, and order taken into account. - Wolfdieter Lang, Apr 08 2013
a(n)^k is a member of this sequence for any k > 1. - Boris Putievskiy, May 05 2013
The selection rule for the planes with Miller indices (hkl) to undergo X-ray diffraction in a simple cubic lattice is h^2+k^2+l^2 = N where N is a term of this sequence. See A004014 for f.c.c. lattice. - Mohammed Yaseen, Nov 06 2022

Examples

			a(1) = 0 = 0^2 + 0^2 + 0^2. A005875(0) = 1 = A000164(0).
a(9) = 9 = 0^2 + 0^2 + 3^2 =  1^2 +  2^2 + 2^2. A000164(9) = 2. A000164(9) = 30 = 2*3 + 8*3 (counting signs and order). - _Wolfdieter Lang_, Apr 08 2013
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 37.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section C20.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 311.

Crossrefs

Union of A000290, A000404 and A000408 (common elements).
Union of A000290, A000415 and A000419 (disjunct sets).
Complement of A004215.
Cf. A005875 (number of representations if x, y and z are integers).

Programs

  • Maple
    isA000378 := proc(n) # return true or false depending on n being in the list
        local x,y ;
        for x from 0 do
            if 3*x^2 > n then
                return false;
            end if;
            for y from x do
                if x^2+2*y^2 > n then
                    break;
                else
                    if issqr(n-x^2-y^2) then
                        return true;
                    end if;
                end if;
            end do:
        end do:
    end proc:
    A000378 := proc(n) # generate A000378(n)
        option remember;
        local a;
        if n = 1 then
            0;
        else
            for a from procname(n-1)+1 do
                if isA000378(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A000378(n),n=1..100) ; # R. J. Mathar, Sep 09 2015
  • Mathematica
    okQ[n_] := If[EvenQ[k = IntegerExponent[n, 2]], m = n/2^k; Mod[m, 8] != 7, True]; Select[Range[0, 100], okQ] (* Jean-François Alcover, Feb 08 2016, adapted from PARI *)
  • PARI
    isA000378(n)=my(k=valuation(n, 2)); if(k%2==0, n>>=k; n%8!=7, 1)
    
  • PARI
    list(lim)=my(v=List(),k,t); for(x=0,sqrtint(lim\=1), for(y=0, min(sqrtint(lim-x^2),x), k=x^2+y^2; for(z=0,min(sqrtint(lim-k), y), listput(v,k+z^2)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
    
  • Python
    def valuation(n, b):
        v = 0
        while n > 1 and n%b == 0: n //= b; v += 1
        return v
    def ok(n): return n//4**valuation(n, 4)%8 != 7
    print(list(filter(ok, range(84)))) # Michael S. Branicky, Jul 15 2021
    
  • Python
    from itertools import count, islice
    def A000378_gen(): # generator of terms
        return filter(lambda n:n>>2*(bin(n)[:1:-1].index('1')//2) & 7 < 7, count(1))
    A000378_list = list(islice(A000378_gen(),30)) # Chai Wah Wu, Jun 27 2022
    
  • Python
    def A000378(n):
        def f(x): return n-1+sum(((x>>(i<<1))-7>>3)+1 for i in range(x.bit_length()>>1))
        m, k = n-1, f(n-1)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 14 2025

Formula

Legendre: a nonnegative integer is a sum of three squares iff it is not of the form 4^k m with m == 7 (mod 8).
n^(2k+1) is in the sequence iff n is in the sequence. - Ray Chandler, Feb 03 2009
Complement of A004215; complement of A000302(i)*A004771(j), i,j>=0. - Boris Putievskiy, May 05 2013
a(n) = 6n/5 + O(log n). - Charles R Greathouse IV, Mar 14 2014

Extensions

More terms from Ray Chandler, Sep 05 2004

A038502 Remove 3's from n.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 7, 8, 1, 10, 11, 4, 13, 14, 5, 16, 17, 2, 19, 20, 7, 22, 23, 8, 25, 26, 1, 28, 29, 10, 31, 32, 11, 34, 35, 4, 37, 38, 13, 40, 41, 14, 43, 44, 5, 46, 47, 16, 49, 50, 17, 52, 53, 2, 55, 56, 19, 58, 59, 20, 61, 62, 7, 64, 65, 22, 67, 68, 23, 70, 71, 8, 73, 74, 25, 76
Offset: 1

Views

Author

Keywords

Comments

As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019
The largest divisor of n not divisible by 3. - Amiram Eldar, Sep 15 2020

Examples

			From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (2*3)*G(x^3) - (2*9)*G(x^9) - (2*27)*G(x^27) - ..., where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (2/3)*H(x^3) - (2/9)*H(x^9) - (2/27)*H(x^27) - ..., where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (2/3^2)*L(x^3) - (2/9^2)*L(x^9) - (2/27^2)*L(x^27) - ..., where L(x) = Log(1/(1 - x)).
Also, Sum_{n >= 1} 1/a(n)*x^n = L(x) + (2/3)*L(x^3) + (2/3)*L(x^9) + (2/3)*L(x^27) + ... .
(End)
		

Crossrefs

Result of iterative removal of other factors: A000265 (2), A065883 (4), A132739 (5), A244414 (6), A242603 (7), A004151 (10).

Programs

  • Haskell
    a038502 n = if m > 0 then n else a038502 n'  where (n', m) = divMod n 3
    -- Reinhard Zumkeller, Jan 03 2011
    
  • Magma
    [n/3^Valuation(n,3): n in [1..80]]; // Bruno Berselli, May 21 2013
  • Mathematica
    f[n_] := Times @@ (First@#^Last@# & /@ Select[ FactorInteger@n, First@# != 3 &]); Array[f, 76] (* Robert G. Wilson v, Jul 31 2006 *)
    Table[n/3^IntegerExponent[n, 3], {n, 100}] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n)=if(n<1, 0, n/3^valuation(n,3)) /* Michael Somos, Nov 10 2005 */
    

Formula

Multiplicative with a(p^e) = 1 if p = 3, otherwise p^e. - Mitch Harris, Apr 19 2005
a(0) = 0, a(3*n) = a(n), a(3*n+1) = 3*n+1, a(3*n+2) = 3*n+2.
Dirichlet g.f. zeta(s-1)*(3^s-3)/(3^s-1). - R. J. Mathar, Feb 11 2011
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,3^n).
O.g.f.: F(x) - 2*F(x^3) - 2*F(x^9) - 2*F(x^27) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers. More generally, for m >= 1,
Sum_{n >= 0} a(n)^m*x^n = F(m,x) - (3^m - 1)( F(m,x^3) + F(m,x^9) + F(m,x^27) + ... ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (3/8) * n^2. - Amiram Eldar, Oct 29 2022
a(n) = n / A038500(n). - R. J. Mathar, Mar 13 2024

A347834 An array A of the positive odd numbers, read by antidiagonals upwards, giving the present triangle T.

Original entry on oeis.org

1, 3, 5, 7, 13, 21, 9, 29, 53, 85, 11, 37, 117, 213, 341, 15, 45, 149, 469, 853, 1365, 17, 61, 181, 597, 1877, 3413, 5461, 19, 69, 245, 725, 2389, 7509, 13653, 21845, 23, 77, 277, 981, 2901, 9557, 30037, 54613, 87381, 25, 93, 309, 1109, 3925, 11605, 38229, 120149, 218453, 349525
Offset: 1

Views

Author

Wolfdieter Lang, Sep 20 2021

Keywords

Comments

For the definition of this array A see the formula section.
The rows of A appear in a draft by Immmo O. Kerner in eqs. (1) and (2) as so-called horizontal sequences (horizontale Folgen). Thanks to Dr. A. Eckert for sending me this paper.
This array with entry A(k, n) becomes equal to the array T with T(n, k) given in A178415 by using a permutation of the rows, and changing the offset: A(k, n) = T(pe(k), n+1), with pe(3*(L+1)) = 4*(L+1), pe(1+3*L) = 1 + 2*L, pe(2+3*L) = 2*(1 + 2*L), for L >= 0. This permutation appears in A265667.
A proper sub-array is A238475(n, k) = A(1 + 3*(k-1), n-1), for k >= 1 and n >= 1.
In the directed Collatz tree with nodes labeled with only positive odd numbers (see A256598 for the paths), here called CTodd, the level L = 0 (on the top) has the node with label 1 as root. Because 1 -> 1 there is an arrow (a 1-cycle or loop) at the root. The level L = 1 consists of the nodes with labels A(1, n), for n >= 1, and each node is connected to 1 by a downwards directed arrow. The next levels for L >= 2 are obtained using the successor rule (used also by Kerner): S(u) = (4*u - 1)/3 if u == 1 (mod 3), (2*u - 1)/3 if u == 5 (mod 3), and there is no successor S(u) = empty if u = 3 (mod 6), that is, this node is a leaf.
However, each node with label u on level L >= 1, except a leaf, has as successors at level L + 1 not only the node with S(u) but all the nodes with labels A(S(u), n), for n >= 0.
In this way each node (also the root) of this CTodd has in-degree 1 and infinite out-degree (for L >= 2 there are infinitely many infinite outgoing arrows). All nodes with label A(k, n) with n >= 1, have the same precursor as the node A(k,0) in this tree for each k >= 1.
Except for the loop (1-cycle) for the root 1 there are no cycles in this directed tree CTodd.
That each number N = 5 + 8*K, for K >= 0 appears in array A for some column n >= 1 uniquely can be proved, using the fact of strictly increasing rows and columns, by showing that the columns n = 1, 2, ..., c contain all positive integers congruent to 5 modulo 8 except those of the positive congruence class A(1, c+1) modulo 2^(2*c+3) by induction on c. [added Dec 05 2021]
Row index k for numbers congruent to 5 modulo 8: Each number N = 5 + 8*K, for K >= 0, from A004770 is a member of row k of the array A starting with element A(k, 0) = (2*A065883(2 + 3*N) - 1)/3. For this surjective map see A347840. [simplified Dec 05 2021]
The Collatz conjecture can be reduced to the conjecture that in this rooted and directed tree CTodd each positive odd number appears as a label once, that is, all entries of the array A appear.

Examples

			The array A(k, n) begins:
k\n  0   1   2    3    4     5      6      7       8       9       10 ...
-------------------------------------------------------------------------
1:   1   5  21   85  341  1365   5461  21845   87381  349525  1398101
2:   3  13  53  213  853  3413  13653  54613  218453  873813  3495253
3:   7  29 117  469 1877  7509  30037 120149  480597 1922389  7689557
4:   9  37 149  597 2389  9557  38229 152917  611669 2446677  9786709
5:  11  45 181  725 2901 11605  46421 185685  742741 2970965 11883861
6:  15  61 245  981 3925 15701  62805 251221 1004885 4019541 16078165
7:  17  69 277 1109 4437 17749  70997 283989 1135957 4543829 18175317
8:  19  77 309 1237 4949 19797  79189 316757 1267029 5068117 20272469
9:  23  93 373 1493 5973 23893  95573 382293 1529173 6116693 24466773
10: 25 101 405 1621 6485 25941 103765 415061 1660245 6640981 26563925
...
--------------------------------------------------------------------
The triangle T(k, n) begins:
k\n  0  1   2    3    4     5     6      7      8      9 ...
------------------------------------------------------------
1:   1
2:   3  5
3:   7 13  21
4:   9 29  53   85
5:  11 37 117  213  341
6:  15 45 149  469 853   1365
7:  17 61 181  597 1877  3413  5461
8:  19 69 245  725 2389  7509 13653  21845
9:  23 77 277  981 2901  9557 30037  54613  87381
10: 25 93 309 1109 3925 11605 38229 120149 218453 349525
...
-------------------------------------------------------------
Row index k of array A, for entries 5 (mod 8).
213 = 5 + 8*26. K = 28 is even, (3*231+1)/16 = 40, A065883(40) = 10, hence A(k, 0) = N' = (10-1)/3 = 3, and k = 2. Moreover, n = log_4((3*213 + 1)/(3*A(2,0) + 1)) = log_4(64) = 3. 213 = A(2, 3).
85 = 5 + 8*10. K = 10 is even, (3*85 + 1)/16 = 16, A065883(16) = 1, N' = (1-1)/3 = 0 is even, hence A(k, 0) = 4*0 + 1 = 1, k = 1. 85 = A(1, 3).
61 = 5 + 8*7, K = 7 is odd, k = (7+1)/2 + ceiling((7+1)/4) = 6, and n = log_4((3*61 + 1)/(3*A(6,0) + 1)) = 1. 61 = A(6, 1).
----------------------------------------------------------------------------
		

Crossrefs

Row sequences of the array A, also diagonal sequences of the triangle T: -A007583 (k=0), A002450(n+1), A072197, A072261(n+1), A206374(n+1), A072262(n+1), A072262(n+1), A072201(n+1), A330246(n+1), ...
Column sequences of the array A, also of the triangle T (shifted): A047529, A347836, A347837, ...

Programs

  • Maple
    # Seen as an array:
    A := (n, k) -> ((3*(n + floor(n/3)) - 1)*4^(k+1) - 2)/6:
    for n from 1 to 6 do seq(A(n, k), k = 0..9) od;
    # Seen as a triangle:
    T := (n, k) -> 2^(2*k + 1)*(floor((n - k)/3) - k + n - 1/3) - 1/3:
    for n from 1 to 9 do seq(T(n, k), k = 0..n-1) od;
    # Using row expansion:
    gf_row := k -> (1 / (x - 1) - A047395(k)) / (4*x - 1):
    for k from 1 to 10 do seq(coeff(series(gf_row(k), x, 11), x, n), n = 0..10) od;
    # Peter Luschny, Oct 09 2021
  • Mathematica
    A347834[k_, n_] := (4^n*(6*(Floor[k/3] + k) - 2) - 1)/3;
    Table[A347834[k - n, n], {k, 10}, {n, 0, k - 1}] (* Paolo Xausa, Jun 26 2025 *)

Formula

Array A:
A(k, 0) = A047529(k) (the positive odd numbers {1, 3, 7} (mod 8));
A(k, n) = ((3* A(k, 0) + 1)*4^n - 1)/3, for k >= 1 and n >= 0.
Recurrence for rows k >= 1: A(k, n) = 4*A(k, n-1) + 1, for n >= 1, with A(k, 0) = 2*(k + floor(k/3)) - 1 = A047529(k).
Explicit form: A(k, n) = ((3*(k + floor(k/3)) - 1)*4^(n+1) - 2)/6, k >= 1, n >= 0. Here 3*(k + floor(k/3)) = A319451(k).
Hence A(k, n) = 5 + 8*(2*A(k, n-2)), for n >= 1, with A(k, 0) = 2*(k + floor(k/3)) - 1 = A047529(k), and 2*A(k, -1) = (A(k, 1) - 5)/8 = k - 1 + floor(k/3) (equals index n of A(k, 1) in the sequence (A004770(n+1))_{n >= 0}). A(k, -1) is half-integer if k = A007494(m) = m + ceiling(m/2), for m >= 1, and A(k, -1) = 2*K if k = 1 + 3*K = A016777(K), for K >= 0.
O.g.f.: expansion in z gives o.g.f.s for rows k, also for k = 0: -A007583; expansion in x gives o.g.f.s for columns n.
G(z, x) = (2*(-1 + 3*z + 3*z^2 + 7*z^3)*(1-x) - (1-4*x)*(1-z^3)) / (3*(1-x)*(1-4*x)*(1-z)*(1-z^3)).
Triangle T:
T(k, n) = A(k - n, n), for k >= 1 and n = 0..k-1.
A(k, n) = [x^n] (1/(x - 1) - A047395(k)) / (4*x - 1). - Peter Luschny, Oct 09 2021

A065881 Ultimate modulo 10: right-hand nonzero digit of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Henry Bottomley, Nov 26 2001

Keywords

Examples

			a(3)=3, a(23)=3, a(30)=3, a(12300)=3.
		

Crossrefs

In base 2 this is A000012, base 3 A060236 and base 4 A065882. For n <= 100 this sequence is also "Remove final zeros from n" which in bases 2, 3 and 4 produces A000265, A038502 and A065883. Cf. A010879.

Programs

  • Mathematica
    um10[n_]:=Module[{idns=Split[IntegerDigits[n]]},If[idns[[-1,1]] == 0, idns[[-2,1]], idns[[-1,1]]]]; Array[um10,110] (* Harvey P. Dale, Dec 26 2016 *)
  • PARI
    a(n) = { n/10^valuation(n,10)%10 } \\ Harry J. Smith, Nov 03 2009
    
  • Python
    def A065881(n): return int(str(n).rstrip('0')[-1]) # Chai Wah Wu, Dec 07 2023

Formula

If n mod 10 = 0 then a(n) = a(n/10), otherwise a(n) = n mod 10.

A327938 Multiplicative with a(p^e) = p^(e mod p).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 9, 10, 11, 3, 13, 14, 15, 1, 17, 18, 19, 5, 21, 22, 23, 6, 25, 26, 1, 7, 29, 30, 31, 2, 33, 34, 35, 9, 37, 38, 39, 10, 41, 42, 43, 11, 45, 46, 47, 3, 49, 50, 51, 13, 53, 2, 55, 14, 57, 58, 59, 15, 61, 62, 63, 1, 65, 66, 67, 17, 69, 70, 71, 18, 73, 74, 75, 19, 77, 78, 79, 5, 3, 82, 83, 21, 85, 86, 87, 22
Offset: 1

Views

Author

Antti Karttunen, Oct 01 2019

Keywords

Comments

All terms are in A048103.

Crossrefs

Differs from A065883 for the first time at n=27.

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, p]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 07 2022 *)
  • PARI
    A327938(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]%f[k,1])); factorback(f); };

Formula

Multiplicative with a(p^e) = p^(e mod p).
a(n) = n / A327939(n).
For all n, A129251(a(n)) = 0, A327936(a(n)) = 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1/(1+1/p^p)) = 0.38559042841678887219... . - Amiram Eldar, Nov 07 2022

A003156 A self-generating sequence (see Comments for definition).

Original entry on oeis.org

1, 4, 5, 6, 9, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27, 30, 33, 36, 37, 38, 41, 44, 47, 48, 49, 52, 55, 58, 59, 60, 63, 64, 65, 68, 69, 70, 73, 76, 79, 80, 81, 84, 85, 86, 89, 90, 91, 94, 97, 100, 101, 102, 105, 106, 107, 110, 111, 112, 115, 118, 121, 122, 123, 126, 129, 132
Offset: 1

Views

Author

Keywords

Comments

From N. J. A. Sloane, Dec 26 2020: (Start)
The best definitions of the triple [this sequence, A003157, A003158] are as the rows a(n), b(n), c(n) of the table:
n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
a: 1, 4, 5, 6, 9, 12, 15, 16, 17, 20, 21, 22, ...
b: 3, 8, 11, 14, 19, 24, 29, 32, 35, 40, 43, 46, ...
c: 2, 7, 10, 13, 18, 23, 28, 31, 34, 39, 42, 45, ...
where a(1)=1, b(1)=3, c(1)=2, and thereafter
a(n) = mex{a(i), b(i), c(i), i
b(n) = a(n) + 2*n,
c(n) = b(n) - 1.
Then a,b,c form a partition of the positive integers.
Note that there is another triple of sequences (A003144, A003145, A003146) also called a, b, c and also a partition of the positive integers, in a different paper by the same authors (Carlitz-Scovelle-Hoggatt) in the same volume of the same journal.
(End)
a(n) is the number of ones before the n-th zero in the Feigenbaum sequence A035263. - Philippe Deléham, Mar 27 2004
Number of odd numbers before the n-th even number in A007413, A007913, A001511, A029883, A033485, A035263, A036585, A065882, A065883, A088172, A092412. - Philippe Deléham, Apr 03 2004
Indices of a in the sequence closed under a -> abc, b -> a, c -> a, starting with a(1) = a; see A092606 where a = 0, b = 2, c = 1. - Philippe Deléham, Apr 12 2004

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    following Deléham
    a003156 n = a003156_list !! (n-1)
    a003156_list = scanl1 (+) a080426_list
    -- Reinhard Zumkeller, Oct 27 2014
    
  • Maple
    a:= proc(n) global l; while nops(l) [1, 3$d, 1][], l) od; `if` (n=1, 1, a(n-1) +l[n]) end: l:= [1]: seq (a(n), n=1..80); # Alois P. Heinz, Oct 31 2009
  • Mathematica
    Position[Nest[Flatten[# /. {0 -> {0, 2, 1}, 1 -> {0}, 2 -> {0}}]&, {0}, 7], 0] // Flatten (* Jean-François Alcover, Mar 14 2014 *)
  • Python
    def A003156(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n)-n # Chai Wah Wu, Jan 29 2025

Formula

a(n) = A079523(n) - n + 1 = A003157(n) - 2n = A003158(n) - 2n + 1. - Philippe Deléham, Feb 28 2004
a(n) = A036554(n) - n = A072939(n) - n - 1 = 2*A003159(n) - n. - Philippe Deléham, Apr 10 2004
a(n) = Sum_{k = 1..n} A080426(k). - Philippe Deléham, Apr 16 2004

Extensions

More terms from Alois P. Heinz, Oct 31 2009
Incorrect equation removed from formula by Peter Munn, Dec 11 2020

A065882 Ultimate modulo 4: right-hand nonzero digit of n when written in base 4.

Original entry on oeis.org

1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 2, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 3, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 2, 1, 2, 3, 1, 1, 2, 3, 2, 1
Offset: 1

Author

Henry Bottomley, Nov 26 2001

Keywords

Comments

From Bradley Klee, Sep 12 2015: (Start)
In some guise, this sequence is a linear encoding of the three fixed-point half-hex tilings (cf. Baake & Grimm, Frettlöh). Applying a permutation, morphism x -> 123x becomes x -> x123, which has three fixed points. Applying a partition, morphism x -> x123 becomes x ->{{3,2},{x,1}} or
3 2 3 2
3 1 2 1
3 2 3 2 3 2
x -> x 1 -> x 1 1 1 -> etc.,
which is the substitution rule for the half-hex tiling when the numbers 1,2,3 determine the direction of a dissecting diameter inscribed on each hexagon.
(End)

Examples

			a(7)=3 and a(112)=3, since 7 is written in base 4 as 13 and 112 as 1300.
		

References

  • M. Baake and U. Grimm, Aperiodic Order Vol. 1, Cambridge University Press, 2013, page 205.

Crossrefs

In base 2 this is A000012, base 3 A060236 and base 10 A065881.
Defining relations for g.f. similar to A014577.

Programs

  • Maple
    f:= proc(n)
    local x:=n;
       while x mod 4 = 0 do x:= x/4 od:
       x mod 4;
    end proc;
    map(f, [$1..100]); # Robert Israel, Jan 05 2016
  • Mathematica
    Nest[ Flatten[ # /. {1 -> {1, 2, 3, 1}, 2 -> {1, 2, 3, 2}, 3 -> {1, 2, 3, 3}}] &, {1}, 4] (* Robert G. Wilson v, May 07 2005 *)
    b[n_] := CoefficientList[Series[
        With[{f0 = (x + 2 x^2 + 3 x^3)/(1 - x^4)},
         Nest[ (# /. x -> x^4) + f0 &, f0, Ceiling[Log[4, n/3]]]],
    {x, 0, n}], x][[2 ;; -1]]; b[100](* Bradley Klee, Sep 12 2015 *)
    Table[Mod[n/4^IntegerExponent[n, 4], 4], {n, 1, 120}] (* Clark Kimberling, Oct 19 2016 *)
  • PARI
    a(n) = (n/4^valuation(n,4))%4; \\ Joerg Arndt, Sep 13 2015
    
  • Python
    def A065882(n): return (n>>((~n & n-1).bit_length()&-2))&3 # Chai Wah Wu, Aug 21 2023

Formula

If n mod 4 = 0 then a(n) = a(n/4), otherwise a(n) = n mod 4. a(n) = A065883(n) mod 4.
Fixed point of the morphism: 1 ->1231, 2 ->1232, 3 ->1233, starting from a(1) = 1. Sequence read mod 2 gives A035263. a(n) = A007913(n) mod 4. - Philippe Deléham, Mar 28 2004
G.f. g(x) satisfies g(x) = g(x^4) + (x + 2 x^2 + 3 x^3)/(1 - x^4). - Bradley Klee, Sep 12 2015

A072400 (Factors of 4 removed from n) modulo 8.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 1, 2, 3, 3, 5, 6, 7, 1, 1, 2, 3, 5, 5, 6, 7, 6, 1, 2, 3, 7, 5, 6, 7, 2, 1, 2, 3, 1, 5, 6, 7, 2, 1, 2, 3, 3, 5, 6, 7, 3, 1, 2, 3, 5, 5, 6, 7, 6, 1, 2, 3, 7, 5, 6, 7, 1, 1, 2, 3, 1, 5, 6, 7, 2, 1, 2, 3, 3, 5, 6, 7, 5, 1, 2, 3, 5, 5, 6, 7, 6, 1, 2, 3, 7, 5, 6, 7, 6
Offset: 1

Author

Reinhard Zumkeller, Jun 16 2002

Keywords

Comments

a(n) <> 7 iff n equals the sum of 3 integer squares.
a(A004215(k)) = 7 for k>0;

Examples

			From _Michael De Vlieger_, May 08 2017: (Start)
a(4) = 1 since 4 = 1 * 4^1 and 4 / 4^1 = 1; 1 = 1 (mod 8).
a(5) = 5 since it is not a multiple of 4; 5 = 5 (mod 8).
a(12) = 3 since 12 = 3 * 4^1 and 12 / 4^1 = 3; 3 = 3 (mod 8).
a(44) = 3 since 44 = 11 * 4^1 and 44 / 4^1 = 11; 3 = 11 (mod 8).
a(64) = 1 since 64 = 1 * 4^3 and 64 / 4^3 = 1; 1 = 1 (mod 8). (End)
		

Programs

  • Mathematica
    Array[Mod[If[Mod[#, 4] == 0, #/4^IntegerExponent[#, 4], #], 8] &, 96] (* Michael De Vlieger, May 08 2017 *)
  • PARI
    a(n) = (n >> (2*valuation(n, 4))) % 8; \\ Amiram Eldar, May 15 2025
  • Python
    def A072400(n): return (n>>((~n&n-1).bit_length()&-2))&7 # Chai Wah Wu, Aug 01 2023
    

Formula

a(n) = A065883(n) mod 8.
A072401(n) = 1 - A057427(7 - a(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4. - Amiram Eldar, May 15 2025

Extensions

Offset corrected (from 0 to 1) by Antti Karttunen, May 08 2017
Showing 1-10 of 14 results. Next