cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A066049 Numbers n such that 2*n^2 - 1 is a prime.

Original entry on oeis.org

2, 3, 4, 6, 7, 8, 10, 11, 13, 15, 17, 18, 21, 22, 24, 25, 28, 34, 36, 38, 39, 41, 42, 43, 45, 46, 49, 50, 52, 56, 59, 62, 63, 64, 69, 73, 76, 80, 81, 85, 87, 91, 92, 95, 98, 102, 108, 109, 112, 113, 115, 118, 125, 126, 127, 132, 134, 137, 140, 141, 143, 153, 154, 155
Offset: 1

Views

Author

N. J. A. Sloane, Jan 09 2002

Keywords

Comments

It is conjectured that this sequence is infinite.
A066436 gives resulting primes p such that (p+1)/2 is square. - Ray Chandler

References

  • D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 31.

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeQ[2#^2-1]&] (* Harvey P. Dale, Jun 14 2011 *)
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(2*m^2 - 1), write("b066049.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Nov 08 2009

Formula

a(n) = A090697(n)/2 = A110558(n)/4. - Ray Chandler, Sep 15 2005
a(n) = A160697(n+1). - Reinhard Zumkeller, May 24 2009

Extensions

Extended by Ray Chandler, Sep 15 2005

A118674 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 31)^2 = y^2.

Original entry on oeis.org

0, 9, 60, 93, 140, 429, 620, 893, 2576, 3689, 5280, 15089, 21576, 30849, 88020, 125829, 179876, 513093, 733460, 1048469, 2990600, 4274993, 6111000, 17430569, 24916560, 35617593, 101592876, 145224429, 207594620, 592126749, 846430076
Offset: 1

Views

Author

Mohamed Bouhamida, May 19 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+31, y).
Corresponding values y of solutions (x, y) are in A157646.
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (33 + 8*sqrt(2))/31 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1539 + 850*sqrt(2))/31^2 for n mod 3 = 0.

Crossrefs

cf. A157646, A066436 (primes of the form 2*n^2-1), A118673, A129836, A001652, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3 + 2*sqrt(2)), A157647 (decimal expansion of (33 + 8*sqrt(2))/31), A157648 (decimal expansion of (1539 + 850*sqrt(2))/31^2).

Programs

  • Magma
    I:=[0,9,60,93,140,429,620]; [n le 7 select I[n] else Self(n-1) - 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..50]]; // G. C. Greubel, Mar 31 2018
  • Mathematica
    ClearAll[a]; Evaluate[Array[a, 6]] = {0, 9, 60, 93, 140, 429}; a[n_] := a[n] = 6*a[n-3] - a[n-6] + 62; Table[a[n], {n, 1, 31}] (* Jean-François Alcover, Dec 27 2011, after given formula *)
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,9,60,93,140,429,620}, 50] (* G. C. Greubel, Mar 31 2018 *)
  • PARI
    {forstep(n=0, 850000000, [1, 3], if(issquare(2*n^2+62*n+961), print1(n, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 62 for n > 6; a(1)=0, a(2)=9, a(3)=60, a(4)=93, a(5)=140, a(6)=429.
G.f.: x*(9 + 51*x + 33*x^2 - 7*x^3 - 17*x^4 - 7*x^5)/((1-x)*(1 - 6*x^3 + x^6)).
a(3*k + 1) = 31*A001652(k) for k >= 0.

Extensions

Edited by Klaus Brockhaus, Mar 11 2009

A129836 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 97)^2 = y^2.

Original entry on oeis.org

0, 15, 228, 291, 368, 1575, 1940, 2387, 9416, 11543, 14148, 55115, 67512, 82695, 321468, 393723, 482216, 1873887, 2295020, 2810795, 10922048, 13376591, 16382748, 63658595, 77964720, 95485887, 371029716, 454411923, 556532768
Offset: 1

Views

Author

Mohamed Bouhamida, May 21 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x + 97, y).
Corresponding values y of solutions (x, y) are in A157469.
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a (prime) number in A066436, the x values are given by the sequence defined by a(n) = 6*a(n-3) - a(n-6) + 2p with a(1)=0, a(2) = 2m + 1, a(3) = 6m^2 - 10m + 4, a(4) = 3p, a(5) = 6m^2 + 10m + 4, a(6) = 40m^2 - 58m + 21 (cf. A118673).
Pairs (p, m) are (7, 2), (17, 3), (31, 4), (71, 6), (97, 7), (127, 8), (199, 10), (241, 11), (337, 13), (449, 15), (577, 17), (647, 18), (881, 21), (967, 22), ...
lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (99 + 14*sqrt(2))/97 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (19491 + 12070*sqrt(2))/97^2 for n mod 3 = 0.
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a prime number in A066436, m>=2, Y values are given by the sequence defined by b(n) = 6*b(n-3) - b(n-6) with b(1) = p, b(2) = 2m^2 + 2m + 1, b(3) = 10m^2 - 14m + 5, b(4) = 5p, b(5) = 10m^2 + 14m + 5, b(6) = 58m^2 - 82m + 29. - Mohamed Bouhamida, Sep 09 2009

Crossrefs

Cf. A157469, A066436 (primes of the form 2*n^2 - 1), A001652, A118673, A118674, A156035 (decimal expansion of 3 + 2*sqrt(2)), A157470 (decimal expansion of (99 + 14*sqrt(2))/97), A157471 (decimal expansion of (19491 + 12070*sqrt(2))/97^2).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(15+213*x+63*x^2-13*x^3-71*x^4-13*x^5)/((1-x)*(1-6*x^3 + x^6)))); // G. C. Greubel, May 07 2018
  • Mathematica
    ClearAll[a]; Evaluate[Array[a, 6]] = {0, 15, 228, 291, 368, 1575}; a[n_] := a[n] = 6*a[n-3] - a[n-6] + 194; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Dec 27 2011, after given formula *)
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,15,228,291,368,1575,1940}, 50] (* G. C. Greubel, May 07 2018 *)
  • PARI
    forstep(n=0, 600000000, [3, 1], if(issquare(2*n^2+194*n+9409), print1(n, ",")))
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 194 for n > 6; a(1)=0, a(2)=15, a(3)=228, a(4)=291, a(5)=368, a(6)=1575.
G.f.: x*(15 + 213*x + 63*x^2 - 13*x^3 - 71*x^4 - 13*x^5)/((1-x)*(1 - 6*x^3 + x^6)).
a(3*k + 1) = 97*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Mar 12 2009

A118673 Positive solutions x to the equation x^2 + (x+71)^2 = y^2.

Original entry on oeis.org

0, 13, 160, 213, 280, 1113, 1420, 1809, 6660, 8449, 10716, 38989, 49416, 62629, 227416, 288189, 365200, 1325649, 1679860, 2128713, 7726620, 9791113, 12407220, 45034213, 57066960, 72314749, 262478800, 332610789, 421481416, 1529838729, 1938597916, 2456573889
Offset: 0

Views

Author

Mohamed Bouhamida, May 19 2006

Keywords

Comments

Consider all Pythagorean triples (x,x+71,y) ordered by increasing y; sequence gives x values.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2 the associated value in A066049, the x values are given by the sequence defined by: a(n) = 6*a(n-3) -a(n-6) + 2*p with a(0)=0, a(1)=2m+1, a(2)=6m^2-10m+4, a(3)=3p, a(4)=6m^2+10m+4, a(5)=40m^2-58m+21.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(0)=p, b(1)=2m^2+2m+1, b(2)=10m^2-14m+5, b(3)=5p, b(4)=10m^2+14m+5, b(5)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Crossrefs

Cf. A076296 (p=7), A118120 (p=17), A118674 (p=31), A129836 (p=97), A129992 (p=127), A129993 (p=199), A129991 (p=241), A129999 (p=337), A130004 (p=449), A130005 (p=577), A130013 (p=647), A130014 (p=881), A130017 (p=967).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(13+147*x+53*x^2-11*x^3-49*x^4-11*x^5)/((1-x)*(1 - 6*x^3 +x^6)))); // G. C. Greubel, May 07 2018
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+71)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,13,160,213,280,1113,1420},100] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,-1,0,-6,6,0,1]^n*[0;13;160;213;280;1113;1420])[1,1] \\ Charles R Greathouse IV, Apr 22 2016
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(13+147*x+53*x^2-11*x^3 -49*x^4 -11*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, May 07 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) +142 with a(0)=0, a(1)=13, a(2)=160, a(3)=213, a(4)=280, a(5)=1113.
O.g.f.: x*(13+147*x+53*x^2-11*x^3-49*x^4-11*x^5)/((1-x)*(1-6*x^3+x^6)). - R. J. Mathar, Jun 10 2008

Extensions

Edited by R. J. Mathar, Jun 10 2008

A118120 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+17)^2 = y^2.

Original entry on oeis.org

0, 7, 28, 51, 88, 207, 340, 555, 1248, 2023, 3276, 7315, 11832, 19135, 42676, 69003, 111568, 248775, 402220, 650307, 1450008, 2344351, 3790308, 8451307, 13663920, 22091575, 49257868, 79639203, 128759176, 287095935, 464171332, 750463515, 1673317776
Offset: 0

Views

Author

Mohamed Bouhamida, May 12 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+17, y).
Corresponding values y of solutions (x, y) are in A155923.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a prime number in A066436, m >= 2 the associated value in A066049, the x values are given by the sequence defined by a(n) = 6*a(n-3)-a(n-6)+2p with a(0)=0, a(1)=2m+1, a(2)=6m^2-10m+4, a(3)=3p, a(4)=6m^2+10m+4, a(5)=40m^2-58m+21 (cf. A118673).
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(0)=p, b(1)=2*m^2+2m+1, b(2)=10m^2-14m+5, b(3)=5p, b(4)=10m^2+14m+5, b(5)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Crossrefs

Cf. A155923, A118673, A066436 (primes of the form 2*n^2-1), A066049 (2*n^2-1 is prime), A118554, A118611, A118630.
Cf. A155464 (first trisection), A155465 (second trisection), A155466 (third trisection).

Programs

  • Magma
    [ n: n in [0..25000000] | IsSquare(2*n*(n+17)+289) ];
    
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+17)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,7,28,51,88,207,340},50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    m=32; v=concat([0, 7, 28, 51, 88, 207], vector(m-6)); for(n=7, m, v[n]=6*v[n-3]-v[n-6]+34); v

Formula

a(n) = 6*a(n-3) -a(n-6) +34 for n > 5; a(0)=0, a(1)=7, a(2)=28, a(3)=51, a(4)=88, a(5)=207.
G. f.: x*(7 +21*x +23*x^2 -5*x^3 -7*x^4 -5*x^5)/((1-x)*(1-6*x^3+x^6)).

Extensions

Edited and 248755 changed to 248775 by Klaus Brockhaus, Feb 01 2009

A207059 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x+289)^2 = y^2.

Original entry on oeis.org

119, 231, 300, 476, 867, 1496, 2120, 2511, 3519, 5780, 9435, 13067, 15344, 21216, 34391, 55692, 76860, 90131, 124355, 201144, 325295, 448671, 526020, 725492, 1173051, 1896656, 2615744, 3066567, 4229175, 6837740, 11055219, 15246371, 17873960, 24650136
Offset: 1

Views

Author

Keywords

Comments

For the generic case x^2 + (x + p^2)^2 = y^2 with p = 2*m^2 - 1 a prime number in A066436, m>=3, (0; p^2) and (4*m^3 + 2*m^2 - 2*m - 1; 4*m^4 + 4*m^3 - 2*m - 1) are solutions. - Mohamed Bouhamida, Aug 24 2019

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[ {1, 0, 0, 0, 6, -6, 0, 0, 0, -1, 1}, {119, 231, 300, 476, 867, 1496, 2120, 2511, 3519, 5780, 9435}, 60]
  • PARI
    Vec(x*(85*x^9+48*x^8+23*x^7+48*x^6+85*x^5-391*x^4-176*x^3-69*x^2-112*x-119)/((x-1)*(x^10-6*x^5+1))+O(x^60)) \\ Stefano Spezia, Aug 24 2019

Formula

G.f.: x*(85*x^9+48*x^8+23*x^7+48*x^6+85*x^5-391*x^4-176*x^3-69*x^2-112*x-119)/((x-1)*(x^10-6*x^5+1)). - Colin Barker, Aug 05 2012
a(n) = 6*a(n-5) - a(n-10) + 578 with a(1) = 119, a(2) = 231, a(3) = 300, a(4) = 476, a(5) = 867, a(6) = 1496, a(7) = 2120, a(8) = 2511, a(9) = 3519, a(10) = 5780. - Mohamed Bouhamida, Aug 24 2019

A129993 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x+199)^2 = y^2.

Original entry on oeis.org

0, 21, 504, 597, 704, 3441, 3980, 4601, 20540, 23681, 27300, 120197, 138504, 159597, 701040, 807741, 930680, 4086441, 4708340, 5424881, 23818004, 27442697, 31619004, 138821981, 159948240, 184289541, 809114280, 932247141, 1074118640
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 14 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+199, y).
Corresponding values y of solutions (x, y) are in A159548.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {1, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (91443+58282*sqrt(2))/199^2 for n mod 3 = 0.

Crossrefs

Cf. A159548, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159549 (decimal expansion of (201+20*sqrt(2))/199), A159550 (decimal expansion of (91443+58282*sqrt(2))/199^2).

Programs

  • Magma
    I:=[0,21,504,597,704,3441,3980]; [n le 7 select I[n] else Self(n-1) + 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..50]]; // G. C. Greubel, Mar 31 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,21,504,597,704,3441,3980},30] (* Harvey P. Dale, Jun 03 2012 *)
  • PARI
    {forstep(n=0, 500000000, [1, 3], if(issquare(2*n^2+398*n+39601), print1(n, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 398 for n > 6; a(1)=0, a(2)=21, a(3)=504, a(4)=597, a(5)=704, a(6)=3441.
G.f.: x*(21+483*x+93*x^2-19*x^3-161*x^4-19*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 199*A001652(k) for k >= 0.
a(1)=0, a(2)=21, a(3)=504, a(4)=597, a(5)=704, a(6)=3441, a(7)=3980, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7). - Harvey P. Dale, Jun 03 2012

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 14 2009

A143828 Primes of the form 10*k^2 - 1.

Original entry on oeis.org

89, 359, 809, 1439, 4409, 8999, 10889, 12959, 20249, 23039, 35999, 47609, 51839, 56249, 65609, 75689, 98009, 116639, 123209, 129959, 136889, 143999, 151289, 158759, 166409, 234089, 272249, 282239, 302759, 313289, 334889, 404009, 416159
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [1..400] | IsPrime(a) where a is 10*n^2-1]; // Vincenzo Librandi, Dec 07 2011
  • Mathematica
    p = 10; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], AppendTo[a, k]], {x, 1, 1000}]; a
    Select[Table[10n^2-1,{n,1,800}],PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)

A076296 Consider all Pythagorean triples (X,X+7,Z); sequence gives X values.

Original entry on oeis.org

-3, 0, 5, 8, 21, 48, 65, 140, 297, 396, 833, 1748, 2325, 4872, 10205, 13568, 28413, 59496, 79097, 165620, 346785, 461028, 965321, 2021228, 2687085, 5626320, 11780597, 15661496, 32792613, 68662368, 91281905, 191129372, 400193625, 532029948, 1113983633
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2002

Keywords

Comments

First two terms included for consistency with A076293.
From Klaus Brockhaus, Feb 18 2009: (Start)
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (9+4*sqrt(2))/7 for n mod 3 = {1, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 3 = 0. (End)
For the generic case x^2 + (x+p)^2 = y^2 with p=2*m^2-1 a prime number in A066436, m >= 2, the x values are given by the sequence defined by: a(n) = 6*a(n-3) - a(n-6) + 2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21. Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a prime number, m>=2, the first three consecutive solutions are: (0;p), (2*m+1; 2*m^2+2*m+1), (6*m^2-10*m+4; 10*m^2-14*m+5) and the other solutions are defined by: (X(n); Y(n))= (3*X(n-3)+2*Y(n-3)+p; 4*X(n-3)+3*Y(n-3)+2*p). - Mohamed Bouhamida, Aug 20 2019

Examples

			8 is in the sequence as the shorter leg of the (8,15,17) triangle.
		

Crossrefs

Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7). - Klaus Brockhaus, Feb 18 2009

Programs

  • Magma
    I:=[-3,0,5,8,21,48,65]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
  • Mathematica
    CoefficientList[Series[(3-3x-5x^2-21x^3+5x^4+3x^5+4x^6)/(-1+x+6x^3-6x^4-x^6+x^7),{x,0,50}],x] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {-3,0,5,8,21,48,65}, 50] (* T. D. Noe, Feb 07 2012 *)
  • PARI
    x='x+O('x^30); Vec((-3+3*x+5*x^2+21*x^3-5*x^4-3*x^5-4*x^6)/((1-x)*(1-6*x^3 +x^6))) \\ G. C. Greubel, May 04 2018
    

Formula

a(n) = 6a(n-3) - a(n-6) + 14 = (A076293(n) - 7)/2.
a(n) = sqrt(A076294(n)^2 - A076295(n)^2) = A076295(n) - 7.
a(3*n+1) = 7*A001652(n).
From Mohamed Bouhamida, Jul 06 2007: (Start)
a(n) = 5*(a(n-3) + a(n-6)) - a(n-9) + 28.
a(n) = 7*(a(n-3) - a(n-6)) + a(n-9). (End)
G.f.: (-3 + 3*x + 5*x^2 + 21*x^3 - 5*x^4 - 3*x^5 - 4*x^6)/((1-x)*(1 - 6*x^3 + x^6)). - Klaus Brockhaus, Feb 18 2009

Extensions

More terms from Klaus Brockhaus, Feb 18 2009

A129992 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x+127)^2 = y^2.

Original entry on oeis.org

0, 17, 308, 381, 468, 2117, 2540, 3045, 12648, 15113, 18056, 74025, 88392, 105545, 431756, 515493, 615468, 2516765, 3004820, 3587517, 14669088, 17513681, 20909888, 85498017, 102077520, 121872065, 498319268, 594951693, 710322756, 2904417845, 3467632892
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 14 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+127, y).
Corresponding values y of solutions (x, y) are in A159466.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (129+16*sqrt(2))/127 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (34947+21922*sqrt(2))/127^2 for n mod 3 = 0.

Crossrefs

Cf. A159466, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159467 (decimal expansion of (129+16*sqrt(2))/127), A159468 (decimal expansion of (34947+21922*sqrt(2))/127^2).

Programs

  • Magma
    I:=[0,17,308,381,468,2117,2540]; [n le 7 select I[n] else Self(n-1) + 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..50]]; // G. C. Greubel, Mar 31 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,17,308,381,468,2117,2540},80] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 500000000, [1, 3], if(issquare(2*n^2+254*n+16129), print1(n, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 254 for n > 6; a(1)=0, a(2)=17, a(3)=308, a(4)=381, a(5)=468, a(6)=2117.
G.f.: x*(17+291*x+73*x^2-15*x^3-97*x^4-15*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 127*A001652(k) for k >= 0.

Extensions

Edited and two more terms added by Klaus Brockhaus, Apr 13 2009
Showing 1-10 of 47 results. Next