cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A121723 a(n) = A098916(n+2) + (1-n) * A067318(n).

Original entry on oeis.org

0, 3, 22, 150, 1096, 8820, 78408, 767088, 8212608, 95657760, 1205438400, 16350871680, 237633108480, 3685053415680, 60748282022400, 1061014235904000, 19574489449267200, 380408796994867200, 7768172642717491200
Offset: 1

Views

Author

Joel Duet, Aug 17 2006

Keywords

Comments

This sequence arises when evaluating the generalized sub-volumes of the linearly weighted (n-1)-simplex in dimension n-1. For instance, in dimension 1 where n=2, the 1-simplex is the interval [H;J] of the real line (we suppose H < J). When H is weighted by the real h and J by j, the signed surface of the polygon {(H,0),(J,0),(J,j),(H,h)} of the Euclidean plane is S = (h+j)/2*(J-H).
Then we consider I the middle of [H;J]. It is linearly weighted by i = (h+j)/2. When we search for the weights w1(2) and w2(2) so that the 2 equations 2*Sh/(J-H) = h*w1(2) + j*w2(2) = (h+i)/2 and 2*Sj/(J-H) = h*w2(2) + j*w1(2) = (i+j)/2 are verified (which implies Sh + Sj = S also), we find that w1(2) = a(2)/A098916(2) = 3/4 and w2(2) = A067318(2)/A098916(2) = 1/4.
Even in higher dimensions (n > 2), there are only 2 weights: one for the considered sub-volume and the other for the other sub-volumes. For instance, in dimension 2 where n=3, the first weight w1(3) = 11/18 refers to the part of the triangle which is delimited by the 4 points: one top A, then the middle of [A;B], then the center of gravity, then the middle of [A;C]; and w2(3) = 7/36 refers to any of the 2 other parts of the triangle.

Examples

			a(3) = 22 because we can write 22 = A098916(3) + (1-3) * A067318(3) = 36 - 2*7.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := n! (n - 1) HarmonicNumber[n]; Array[f, 19] (* Robert G. Wilson v, Sep 07 2011 *)

Formula

a(n) = n!*(n-1)*Sum_{i=1..n} (1/i).

Extensions

Definition corrected by Gary Detlefs, Sep 07 2011

A126671 Triangle read by rows: row n (n>=0) has g.f. Sum_{i=1..n} n!*x^i*(1+x)^(n-i)/(n+1-i).

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 2, 7, 11, 0, 6, 26, 46, 50, 0, 24, 126, 274, 326, 274, 0, 120, 744, 1956, 2844, 2556, 1764, 0, 720, 5160, 16008, 28092, 30708, 22212, 13068, 0, 5040, 41040, 147120, 304464, 401136, 351504, 212976, 109584, 0, 40320
Offset: 1

Views

Author

N. J. A. Sloane and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007

Keywords

Comments

The first nonzero column gives the factorial numbers, which are Stirling_1(*,1), the rightmost diagonal gives Stirling_1(*,2), so this triangle may be regarded as interpolating between the first two columns of the Stirling numbers of the first kind.
This is a slice (the right-hand wall) through the infinite square pyramid described in the link. The other three walls give A007318 and A008276 (twice).
The coefficients of the A165674 triangle are generated by the asymptotic expansion of the higher order exponential integral E(x,m=2,n). The a(n) formulas for the coefficients in the right hand columns of this triangle lead to Wiggen's triangle A028421 and their o.g.f.s. lead to the sequence given above. Some right hand columns of the A165674 triangle are A080663, A165676, A165677, A165678 and A165679. - Johannes W. Meijer, Oct 07 2009

Examples

			Triangle begins:
0,
0, 1,
0, 1, 3,
0, 2, 7, 11,
0, 6, 26, 46, 50,
0, 24, 126, 274, 326, 274,
0, 120, 744, 1956, 2844, 2556, 1764,
0, 720, 5160, 16008, 28092, 30708, 22212, 13068,
0, 5040, 41040, 147120, 304464, 401136, 351504, 212976, 109584,
0, 40320, 367920, 1498320, 3582000, 5562576, 5868144, 4292496, 2239344, 1026576, ...
		

Crossrefs

Columns give A000142, A108217, A126672; diagonals give A000254, A067318, A126673. Row sums give A126674. Alternating row sums give A000142.
See A126682 for the full pyramid of coefficients of the underlying polynomials.

Programs

  • Maple
    for n from 1 to 15 do t1:=add( n!*x^i*(1+x)^(n-i)/(n+1-i), i=1..n); series(t1,x,100); lprint(seriestolist(%)); od:
  • Mathematica
    Join[{{0}}, Reap[For[n = 1, n <= 15, n++, t1 = Sum[n!*x^i*(1+x)^(n-i)/(n+1-i), {i, 1, n}]; se = Series[t1, {x, 0, 100}]; Sow[CoefficientList[se, x]]]][[2, 1]]] // Flatten (* Jean-François Alcover, Jan 07 2014, after Maple *)

Formula

Recurrence: T(n,0) = 0; for n>=0, i>=1, T(n+1,i) = (n+1)*T(n,i) + n!*binomial(n,i).
E.g.f.: x*log(1-(1+x)*y)/(x*y-1)/(1+x). - Vladeta Jovovic, Feb 13 2007

A213167 a(n) = n! - (n-2)!.

Original entry on oeis.org

1, 5, 22, 114, 696, 4920, 39600, 357840, 3588480, 39553920, 475372800, 6187104000, 86699289600, 1301447347200, 20835611596800, 354379753728000, 6381450915840000, 121289412980736000, 2426499634470912000
Offset: 2

Views

Author

Olivier Gérard, Nov 02 2012

Keywords

Comments

Row sums of A134433 starting from k=3.
a(n) = sum( (-1)^k*k*A008276(n,k), k=1..n-1).
a(n) = sum( (-1)^k*k*A054654(n,k), k=1..n-2).
For n >= 3, a(n) = number whose factorial base representation (A007623) begins with digits {n-1} and {n-2} followed by n-3 zeros. Viewed in that base, this sequence looks like this: 1, 21, 320, 4300, 54000, 650000, 7600000, 87000000, 980000000, A900000000, BA000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - Antti Karttunen, May 07 2015.

Crossrefs

Column 4 of A257503 (apart from initial 1. Equally, row 4 of A257505).
Cf. A067318.

Programs

Formula

a(n) = n! - (n-2)!.
G.f.: (1/G(0) - 1 - x)/x^2 where G(k) = 1 - x/(x - 1/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 13 2012
G.f.: (1+x)/x^2*(1/Q(0)-1), where Q(k)= 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: 2*Q(0), where Q(k)= 1 - 1/( (k+1)*(k+2) - x*(k+1)^2*(k+2)^2*(k+3)/(x*(k+1)*(k+2)*(k+3) - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 08 2013

A067369 Weight of the alternating group (A_n) in transpositions.

Original entry on oeis.org

0, 0, 4, 22, 166, 1266, 11166, 106128, 1122192, 12809520, 159451920, 2128973760, 30594214080, 468275713920, 7641089769600, 131971588761600, 2412294180710400, 46422407927347200, 940023724189132800, 19949344876532736000, 443393309963068416000, 10288553164881868800000
Offset: 1

Views

Author

Nick Hann (nickhann(AT)aol.com), Jan 20 2002

Keywords

Comments

Sequences A067369, A067370 and A067318 are related: A067318 = A067369 + A067370. A067318 counts transpositions in the symmetric group, denoted S_n. One can think of the transpositions in S_n as being split between the alternating group A_n and its complement, which we call the periphery and denote P_N. For n >= 3, A067369 v(P_N) and A067370 v(A_n) always differ by (n-2)!. When n is odd, v(A_n) is larger; when n is even, v(P_N) is larger. This gives new meaning to the name alternating group. The average weight of permutation in A_n converges with the average weight for a permutation in P_N at infinity.

Crossrefs

Programs

  • GAP
    Concatenation([0],List([2..25],n->(1/2)*((-1)^(n+1)*Factorial(n-2)+n*Factorial(n)-AbsInt(Stirling1(n+1,2))))); # Muniru A Asiru, Dec 15 2018
  • Maple
    seq(coeff(series(factorial(n)*(1/2)*(-(1+x)*log(1+x)+x+x/(1-x)^2+log(1-x)/(1-x)+2),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Dec 15 2018
  • Mathematica
    a[n_] := 1/2*((-1)^(n+1)*(n-2)!+n*n!-Abs[StirlingS1[n+1, 2]]); a[1]=0; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jan 12 2015, after Vladeta Jovovic *)
  • PARI
    a(n)={if(n < 2, 0, 1/2*((-1)^(n+1)*(n-2)!+n*n!-abs(stirling(n+1, 2, 1))))} \\ Andrew Howroyd, Dec 14 2018
    

Formula

a(n) = a(n-1) + [(n-1)!/2]*[vbar(P_N-1)+1]*[n-1)] where vbar(P_N) is the average weight of a permutation in P_N, the periphery of A_n. vbar(P_N-1) is p(n-1)/(n-1)!2 where p(n) is from sequence A067370.
From Vladeta Jovovic, Feb 02 2003: (Start)
a(n) = (1/2)*((-1)^(n+1)*(n-2)! + n*n! - abs(Stirling1(n+1, 2))), n > 1.
E.g.f.: (1/2)*(-(1+x)*log(1+x) + x + x/(1-x)^2 + log(1-x)/(1-x) + 2). (End)

Extensions

More terms from Vladeta Jovovic, Feb 02 2003
a(20)-a(22) from Charlie Neder, Dec 14 2018

A067370 The weight of the periphery of the alternating group, denoted v(P_N).

Original entry on oeis.org

0, 1, 3, 24, 160, 1290, 11046, 106848, 1117152, 12849840, 159089040, 2132602560, 30554297280, 468754715520, 7634862748800, 132058767052800, 2410986506342400, 46443330717235200, 939668036761036800, 19955747250238464000, 443271664862659584000, 10290986066890045440000
Offset: 1

Views

Author

Nick Hann (nickhann(AT)aol.com), Jan 20 2002

Keywords

Comments

Sequences A067369, A067370 and A067318 are related. A067318 counts transpositions in the symmetric group, denoted S_n. One can think of the transpositions in S_n as being split between the alternating group A_n and its complement, which we call the periphery and denote P_N. For n >= 3, A067369 v(P_N) and A067370 v(A_n) always differ by (n-2)!. When n is odd, v(A_n) is larger; when n is even, v(P_N) is larger. This gives new meaning to the name alternating group. The average weight of a permutation in A_n converges with the average weight for a permutation in P_N at infinity.

Examples

			Let n=4. v(S_n)=46, see A067318. (n-2)! = 2! = 2. n is even so P_N is larger than A_n. v(P_N) = 23 + 1 = 24. v(A_n) = 23 - 1 = 22, see A067369. Let n=5. v(S_n)=326. (n-2)! = 3! = 6. n is odd so A_n is larger than P_N. v(P_N) = 163 - 3 = 160. v(A_n) = 163 + 3 = 166.
		

Crossrefs

Programs

  • GAP
    Concatenation([0],List([2..25],n->(1/2)*((-1)^n*Factorial(n-2)+n*Factorial(n)-AbsInt(Stirling1(n+1,2))))); # Muniru A Asiru, Dec 15 2018
  • Maple
    seq(coeff(series(factorial(n)*(1/2)*((1+x)*log(1+x)-x+x/(1-x)^2+log(1-x)/(1-x)),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Dec 15 2018
  • Mathematica
    a[n_] := (n*n! + (-1)^n*((n-2)! + StirlingS1[n+1, 2]))/2; a[1] = 0; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, May 23 2012, after Vladeta Jovovic *)
  • PARI
    a(n)={if(n < 2, 0, (1/2)*((-1)^n*(n-2)! + n*n! - abs(stirling(n+1, 2, 1))))} \\ Andrew Howroyd, Dec 14 2018
    

Formula

v(P_N) = p(n) = p(n-1) + floor((n-1)!/2)*(vbar(A_n-1)+1)*((n-1)) where vbar(A_n) is the average weight of a permutation in A_n, the alternating group. vbar(A_n-1) is a(n-1)/(n-1)!/2 where a(n) is from the sequence A067369.
From Vladeta Jovovic, Feb 02 2003: (Start)
a(n) = (1/2)*((-1)^n*(n-2)! + n*n! - abs(Stirling1(n+1, 2))), n > 1.
E.g.f.: (1/2)*((1+x)*log(1+x) - x + x/(1-x)^2 + log(1-x)/(1-x)). (End)

Extensions

Corrected and extended by Vladeta Jovovic, Feb 02 2003
a(20)-a(22) from Charlie Neder, Dec 14 2018

A088996 Triangle T(n, k) read by rows: T(n, k) = Sum_{j=0..n} binomial(j, n-k) * |Stirling1(n, n-j)|.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 7, 6, 0, 6, 29, 46, 24, 0, 24, 146, 329, 326, 120, 0, 120, 874, 2521, 3604, 2556, 720, 0, 720, 6084, 21244, 39271, 40564, 22212, 5040, 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320
Offset: 0

Views

Author

Philippe Deléham, Dec 01 2003, Aug 17 2007

Keywords

Examples

			Triangle begins:
  1;
  0,    1;
  0,    1,     2;
  0,    2,     7,      6;
  0,    6,    29,     46,     24;
  0,   24,   146,    329,    326,    120;
  0,  120,   874,   2521,   3604,   2556,    720;
  0,  720,  6084,  21244,  39271,  40564,  22212,   5040;
  0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320;
  ...
		

Crossrefs

Variant: A059364, diagonals give A000007, A000142, A067318.
Cf. A001147 (row sums), A048994, A084938.

Programs

  • Magma
    A088996:= func< n,k | (&+[(-1)^j*Binomial(j,n-k)*StirlingFirst(n,n-j): j in [0..n]]) >;
    [A088996(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 23 2022
  • Maple
    A059364 := (n, k) -> add(abs(Stirling1(n, n - j))*binomial(j, n - k), j = 0..n);
    seq(seq(A059364(n, k), k = 0..n), n = 0..8);  # Peter Luschny, Aug 27 2025
  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[(-1)^(n-i)*Binomial[i, k] StirlingS1[n+1, n+1-i], {i, 0, n}]; {{1}}~Join~Table[Abs@ T[n, k], {n,0,10}, {k,n+1,0,-1}] (* Michael De Vlieger, Jun 19 2018 *)
  • Sage
    def A088996(n,k): return add((-1)^(n-i)*binomial(i,k)*stirling_number1(n+1,n+1-i) for i in (0..n))
    for n in (0..10): [A088996(n,k) for k in (0..n)]  # Peter Luschny, May 12 2013
    

Formula

T(n, k) given by [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938. [Original name.]
Sum_{k=0..n} (-1)^k*T(n,k) = (-1)^n.
From Vladeta Jovovic, Dec 15 2004: (Start)
E.g.f.: (1-y-y*x)^(-1/(1+x)).
Sum_{k=0..n} T(n, k)*x^k = Product_{k=1..n} (k*x+k-1). (End)
T(n, k) = n*T(n-1, k-1) + (n-1)*T(n-1, k); T(0, 0) = 1, T(0, k) = 0 if k > 0, T(n, k) = 0 if k < 0. - Philippe Deléham, May 22 2005
Sum_{k=0..n} T(n,k)*x^(n-k) = A019590(n+1), A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, respectively. Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000007(n), A001147(n), A008544(n), A008545(n), A008546(n), A008543(n), A049209(n), A049210(n), A049211(n), A049212(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Aug 10 2007
T(n, k) = Sum_{j=0..n} (-1)^j*binomial(j, n-k)*StirlingS1(n, n-j). - G. C. Greubel, Feb 23 2022

Extensions

New name using a formula of G. C. Greubel by Peter Luschny, Aug 27 2025

A078341 Triangle read by rows: T(n,k) = n*T(n-1,k-1) + k*T(n-1,k) starting with T(0,0)=1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 7, 6, 0, 1, 18, 46, 24, 0, 1, 41, 228, 326, 120, 0, 1, 88, 930, 2672, 2556, 720, 0, 1, 183, 3406, 17198, 31484, 22212, 5040, 0, 1, 374, 11682, 96040, 295004, 385144, 212976, 40320, 0, 1, 757, 38412, 489298, 2339380, 4965900
Offset: 1

Views

Author

F. Chapoton, Nov 22 2002

Keywords

Comments

Triangle of coefficients of polynomials P[n]. Let F(t) satisfy dF/dt = exp(x*(exp(F)-1)) and F(0)=0. Then F(t) = Sum_{n>=0} P[n]/n! t^n, where P[n] is a polynomial in x of degree n-1. The constant term of the polynomial is zero for n >= 2. The coefficient of x is 1 for n >= 2. The coefficient of x^n in P[n+1] is n!. The value at 1 is given by sequence A007549.

Examples

			P[1]=1, P[2]=x, P[3]=x+2*x^2, P[4]=x+7*x^2+6*x^3, P[5]=x+18*x^2+46*x^3+24*x^4, P[6]=x+41*x^2+228*x^3+326*x^4+120*x^5.
Rows start 1; 0,1; 0,1,2; 0,1,7,6; 0,1,18,46,24; 0,1,41,228,326,120; ...
		

Crossrefs

Columns include A000007, A057427, A095151, A103768. Diagonals include A000142, A067318. Row sums are A007549.

Programs

  • Maple
    P[1] := 1; for n from 1 to 10 do P[n+1] := expand(x*diff(P[n],x)+x*n*P[n]) od;
  • Mathematica
    p[1][x_] = 1; p[n_][x_] := x*p[n-1]'[x] + x*(n-1)*p[n-1][x]; Table[ CoefficientList[ p[n][x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 29 2013 *)

Formula

P[1]=1; P[n+1] = x*(d/dx)P[n] + x*n*P[n].

Extensions

Additional comments from Henry Bottomley, Feb 15 2005

A129177 Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} such that w(p)=k (n >= 0; 0 <= k <= n*(n-1)/2) (see comments for definition of w(p)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 6, 6, 3, 5, 2, 1, 1, 24, 24, 12, 20, 14, 10, 7, 5, 2, 1, 1, 120, 120, 60, 100, 70, 74, 59, 37, 30, 19, 15, 7, 5, 2, 1, 1, 720, 720, 360, 600, 420, 444, 474, 342, 240, 214, 160, 116, 89, 49, 36, 25, 15, 7, 5, 2, 1, 1, 5040, 5040, 2520, 4200, 2940, 3108, 3318
Offset: 0

Views

Author

Emeric Deutsch, Apr 11 2007

Keywords

Comments

w(p) is defined (by Edelman, Simion and White) in the following way: if p = (c[1])(c[2])... is expressed in standard cycle form (i.e., cycles ordered by increasing smallest elements with each cycle written with its smallest element in the first position), then w(p) = 0*|c[1]| + 1*|c[2]| + 2*|c[3]| + ..., where |c[j]| denotes the number of entries in the cycle c[j].
Row n has 1 + n*(n-1)/2 terms. Row sums are the factorials (A000142). T(n,0) = T(n,1) = (n-1)! for n >= 2. T(n,2) = (n-1)!/2 = A001710(n-1) for n >= 3. Sum_{k>=0} k*T(n,k) = A067318(n).

Examples

			T(4,2)=3 because we have w(1423) = w((1)(243)) = 0*1 + 1*3 = 3, w(1342) = w((1)(234)) = 0*1 + 1*3=3 and w(2134) = w((12)(3)(4)) = 0*2 + 1*1 + 2*1 = 3.
Triangle starts:
   1;
   1;
   1,  1;
   2,  2,  1,  1;
   6,  6,  3,  5,  2,  1,  1;
  24, 24, 12, 20, 14, 10,  7,  5,  2,  1,  1;
		

Crossrefs

Programs

  • Maple
    for n from 0 to 8 do P[n]:=sort(expand(product(i+t^i,i=0..n-1))) od: for n from 0 to 8 do seq(coeff(P[n],t,j),j=0..n*(n-1)/2) od; # yields sequence in triangular form
    # second Maple program:
    p:= proc(n) option remember; `if`(n<0, 1, expand((n+t^n)*p(n-1))) end:
    T:= n-> (h-> seq(coeff(h,t,i), i=0..degree(h)))(p(n-1)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Dec 16 2016
  • Mathematica
    p[n_] := p[n] = If[n<0, 1, Expand[(n+t^n)*p[n-1]]]; T[n_] := Function[h, Table[Coefficient[h, t, i], {i, 0, Exponent[h, t]}]][p[n-1]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)

Formula

Generating polynomial of row n is P[n](t) = Product_{i=0..n-1} (i + t^i).
Sum_{k=0..n*(n-1)/2} (k+1) * T(n,k) = A121586(n). - Alois P. Heinz, May 04 2023

Extensions

One term for row n=0 prepended by Alois P. Heinz, Dec 16 2016

A292062 Wiener index of the n-transposition graph.

Original entry on oeis.org

0, 1, 21, 552, 19560, 920160, 55974240, 4293596160, 406306575360, 46556342784000, 6357567896064000, 1020650937901056000, 190386526063878144000, 40844355820490686464000, 9987985777548364185600000, 2762125829379285162393600000, 857790151281459139077734400000
Offset: 1

Views

Author

Eric W. Weisstein, Sep 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! (n n! + (-1)^n StirlingS1[n + 1, 2])/2, {n, 20}]
  • PARI
    a(n) = n! * (n*n! - abs(stirling(n+1, 2, 1))) / 2; \\ Andrew Howroyd, Sep 08 2017

Formula

From Andrew Howroyd, Sep 08 2017: (Start)
a(n) = n! * A067318(n) / 2.
a(n) = n! * (n*n! - abs(Stirling1(n+1, 2))) / 2.
(End)
a(n) = (n!/2) * Sum_{k=1..n-1} abs(Stirling1(n, n-k))*k. - Andrew Howroyd, Dec 09 2017

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 08 2017

A197130 Sum of reflection (or absolute) lengths of all elements in the Coxeter group of type B_n.

Original entry on oeis.org

1, 10, 100, 1136, 14816, 220032, 3679488, 68548608, 1409347584, 31717048320, 775808778240, 20499651624960, 582040706088960, 17674457139118080, 571655258741145600, 19621314364126003200, 712374154997583052800, 27277192770051951820800
Offset: 1

Views

Author

Cathy Kriloff, Oct 10 2011

Keywords

Examples

			a(2)=10 since W(B_2)={1, t_1=s_1, t_2=s_2, t_3=s_1*s_2*s_1, t_4=s_2*s_1*s_2, t_1*t_2=s_1*s_2, t_2*t_1=s_2*s_1, t_1*t_4=s_1*s_2*s_1*s_2} in terms of simple reflections s_1 and s_2.
		

References

  • P. Renteln, The distance spectra of Cayley graphs of Coxeter groups, Discrete Math., 311 (2011), 738-755.

Crossrefs

Programs

  • Maple
    seq(2^n*factorial(n)*add((2*k-1)/(2*k),k=1..n),n=1..100);
  • Mathematica
    Table[2^n*Factorial[n]*Sum[(2*k-1)/(2*k),{k,1,n}],{n,1,100}]
  • Sage
    [2^n*factorial(n)*sum([(2*k-1)/(2*k) for k in [1..n]]) for n in [1..100]]

Formula

a(n)=Sum_{w in W(B_n)} l_T(w)=|W(B_n)|Sum_{i=1}^n (d_i-1)/d_i=2^n*n!*(1/2+3/4+...+(2n-1)/(2n)) where T=all reflections in W(B_n), l_T(1)=0 and otherwise l_T(w)=min{k|w=t_1*...*t_k for t_i in T}, and d_1,...,d_n are the degrees of W(B_n)
Showing 1-10 of 12 results. Next