cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A088400 a(n)=A069530(n)/n.

Original entry on oeis.org

29, 19, 0, 14, 13, 0, 8, 7, 0, 29, 19, 0, 5, 4, 0, 8, 7, 0, 2, 19, 0, 14, 4, 0, 17, 7, 0, 2, 1, 0, 5, 4, 0, 8, 7, 0, 2, 1, 0, 14, 4, 0, 8, 7, 0, 2, 1, 0, 5, 13, 0, 8, 7, 0, 11, 1, 0, 5, 4, 0, 17, 7, 0, 2, 1, 0, 5, 4, 0, 8, 16, 0, 2, 1, 0, 5, 4, 0, 8, 7, 0, 2, 1, 0, 5, 4, 0, 8, 7, 0, 2, 1, 0, 5, 4, 0, 26, 25
Offset: 1

Views

Author

Ray Chandler, Sep 28 2003

Keywords

Crossrefs

Cf. A069530.

Programs

  • Maple
    read("transforms"):
    A088400 := proc(n)
        local m ;
        if modp(n,3) = 0 then
             0 ;
        else
            for m from 1 do
                if digsum(m*n) = 11 then
                    return m ;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Aug 06 2019

A052217 Numbers whose sum of digits is 3.

Original entry on oeis.org

3, 12, 21, 30, 102, 111, 120, 201, 210, 300, 1002, 1011, 1020, 1101, 1110, 1200, 2001, 2010, 2100, 3000, 10002, 10011, 10020, 10101, 10110, 10200, 11001, 11010, 11100, 12000, 20001, 20010, 20100, 21000, 30000, 100002, 100011, 100020, 100101
Offset: 1

Views

Author

Henry Bottomley, Feb 01 2000

Keywords

Comments

From Joshua S.M. Weiner, Oct 19 2012: (Start)
Sequence is a representation of the "energy states" of "multiplex" notation of 3 quantum of objects in a juggling pattern.
0 = an empty site, or empty hand. 1 = one object resides in the site. 2 = two objects reside in the site. 3 = three objects reside in the site. (See A038447.) (End)
A007953(a(n)) = 3; number of repdigits = #{3,111} = A242627(3) = 2. - Reinhard Zumkeller, Jul 17 2014
Can be seen as a table whose n-th row holds the n-digit terms {10^(n-1) + 10^m + 10^k, 0 <= k <= m < n}, n >= 1. Row lengths are then (1, 3, 6, 10, ...) = n*(n+1)/2 = A000217(n). The first and the n last terms of row n are 10^(n-1) + 2 resp. 2*10^(n-1) + 10^k, 0 <= k < n. - M. F. Hasler, Feb 19 2020

Crossrefs

Cf. A007953, A218043 (subsequence).
Row n=3 of A245062.
Other digit sums: A011557 (1), A052216 (2), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Other bases: A014311 (binary), A226636 (ternary), A179243 (Zeckendorf).
Cf. A003056, A002262 (triangular coordinates), A056556, A056557, A056558 (tetrahedral coordinates).

Programs

  • Haskell
    a052217 n = a052217_list !! (n-1)
    a052217_list = filter ((== 3) . a007953) [0..]
    -- Reinhard Zumkeller, Jul 17 2014
    
  • Magma
    [n: n in [1..100101] | &+Intseq(n) eq 3 ]; // Vincenzo Librandi, Mar 07 2013
    
  • Mathematica
    Union[FromDigits/@Select[Flatten[Table[Tuples[Range[0,3],n],{n,6}],1],Total[#]==3&]] (* Harvey P. Dale, Oct 20 2012 *)
    Select[Range[10^6], Total[IntegerDigits[#]] == 3 &] (* Vincenzo Librandi, Mar 07 2013 *)
    Union[Flatten[Table[FromDigits /@ Permutations[PadRight[s, 18]], {s, IntegerPartitions[3]}]]] (* T. D. Noe, Mar 08 2013 *)
  • PARI
    isok(n) = sumdigits(n) == 3; \\ Michel Marcus, Dec 28 2015
    
  • PARI
    apply( {A052217_row(n,s,t=-1)=vector(n*(n+1)\2,k,t++>s&&t=!s++;10^(n-1)+10^s+10^t)}, [1..5]) \\ M. F. Hasler, Feb 19 2020
    
  • Python
    from itertools import count, islice
    def agen(): yield from (10**i + 10**j + 10**k for i in count(0) for j in range(i+1) for k in range(j+1))
    print(list(islice(agen(), 40))) # Michael S. Branicky, May 14 2022
    
  • Python
    from math import comb, isqrt
    from sympy import integer_nthroot
    def A052217(n): return 10**((m:=integer_nthroot(6*n,3)[0])-(a:=n<=comb(m+2,3)))+10**((k:=isqrt(b:=(c:=n-comb(m-a+2,3))<<1))-((b<<2)<=(k<<2)*(k+1)+1))+10**(c-1-comb(k+(b>k*(k+1)),2)) # Chai Wah Wu, Dec 11 2024

Formula

T(n,k) = 10^(n-1) + 10^A003056(k) + 10^A002262(k) when read as a table with row lengths n*(n+1)/2, n >= 1, 0 <= k < n*(n+1)/2. - M. F. Hasler, Feb 19 2020
a(n) = 10^A056556(n-1) + 10^A056557(n-1) + 10^A056558(n-1). - Kevin Ryde, Apr 17 2021

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Mar 07 2013

A069537 Multiples of 2 whose digit sum is 2.

Original entry on oeis.org

2, 20, 110, 200, 1010, 1100, 2000, 10010, 10100, 11000, 20000, 100010, 100100, 101000, 110000, 200000, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000, 10000010, 10000100, 10001000, 10010000, 10100000, 11000000, 20000000, 100000010, 100000100, 100001000
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Crossrefs

Cf. A002024, A002260, A088404 (half).
Subsequence of A005349.
Row n=2 of A245062.

Programs

  • PARI
    a(n) = my(r,s=sqrtint((n-1)<<1,&r), x=s+(r>s), y=if(r>s,r-s,r+s)>>1); 10^x + 10^y; \\ Kevin Ryde, Jul 17 2025
  • Python
    from itertools import product
    def agen():
      digits = 1
      while True:
        for i in range(digits-2): yield int("1"+"0"*(digits-3-i)+"1"+"0"*i+"0")
        yield int("2"+"0"*(digits-1))
        digits += 1
    g = agen()
    print([next(g) for i in range(32)]) # Michael S. Branicky, Feb 20 2021
    

Formula

a(n) = 10^A002024(n-1) + 10^A002260(n-1) for n >= 2. - Kevin Ryde, Jul 17 2025

Extensions

Corrected and extended by Ray Chandler, Sep 28 2003

A063997 Multiples of 4 whose digits add to 4.

Original entry on oeis.org

4, 40, 112, 220, 400, 1012, 1120, 1300, 2020, 2200, 3100, 4000, 10012, 10120, 10300, 11020, 11200, 12100, 13000, 20020, 20200, 21100, 22000, 30100, 31000, 40000, 100012, 100120, 100300, 101020, 101200, 102100, 103000, 110020, 110200, 111100
Offset: 1

Views

Author

Lisa O. Coulter (lcoulter(AT)stetson.edu), Sep 06 2001

Keywords

Examples

			4 is an element of the sequence, since 4 is a multiple of 4 the sum of whose digits is 4; 220 is an element of the sequence, since 220 = 4*55 and 2 + 2+ 0 = 4.
		

Crossrefs

Programs

  • Mathematica
    Select[4Range[120000],Total[IntegerDigits[#]]==4&] (* Harvey P. Dale, May 07 2011 *)
  • PARI
    SumDE(x,y)= { local(s); s=0; while (x>9 && sHarry J. Smith, Sep 05 2009

Extensions

More terms from Ray Chandler, Sep 28 2003

A069532 Smallest even number with digit sum n.

Original entry on oeis.org

10, 2, 12, 4, 14, 6, 16, 8, 18, 28, 38, 48, 58, 68, 78, 88, 98, 198, 298, 398, 498, 598, 698, 798, 898, 998, 1998, 2998, 3998, 4998, 5998, 6998, 7998, 8998, 9998, 19998, 29998, 39998, 49998, 59998, 69998, 79998, 89998, 99998, 199998, 299998, 399998, 499998
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Crossrefs

Cf. A000918 (smallest even number with bit sum n), A051885 (smallest number with digit sum n).
Cf. A077491.

Programs

  • Mathematica
    t={}; Do[i=2; While[Total[IntegerDigits[i]]!=n,i=i+2]; AppendTo[t,i],{n,48}]; t (* Jayanta Basu, May 18 2013 *)
  • PARI
    a(n) = {my(k = 2); while(sumdigits(k) != n, k+=2); k;} \\ Michel Marcus, Mar 18 2016

Formula

From Chai Wah Wu, Sep 15 2020: (Start)
a(n) = a(n-1) + 10*a(n-9) - 10*a(n-10) for n > 17.
G.f.: 2*x*(45*x^16 - 45*x^15 + 45*x^14 - 45*x^13 + 45*x^12 - 45*x^11 + 45*x^10 - 45*x^9 + 5*x^8 - 4*x^7 + 5*x^6 - 4*x^5 + 5*x^4 - 4*x^3 + 5*x^2 - 4*x + 5)/((x - 1)*(10*x^9 - 1)). (End)
a(n) = 2 * A077491(n). - Alois P. Heinz, Sep 15 2020

Extensions

More terms from Ray Chandler, Jul 28 2003

A062768 Multiples of 6 such that the sum of the digits is equal to 6.

Original entry on oeis.org

6, 24, 42, 60, 114, 132, 150, 204, 222, 240, 312, 330, 402, 420, 510, 600, 1014, 1032, 1050, 1104, 1122, 1140, 1212, 1230, 1302, 1320, 1410, 1500, 2004, 2022, 2040, 2112, 2130, 2202, 2220, 2310, 2400, 3012, 3030, 3102, 3120, 3210, 3300, 4002, 4020, 4110
Offset: 1

Views

Author

Lisa O Coulter (lisa_coulter(AT)my-deja.com), Jul 17 2001

Keywords

Comments

Even numbers with sum of digits equal to 6 are Harshad numbers (A005349). - Davide Rotondo, Sep 04 2020

Examples

			60 is a member of the sequence since 60 / 6 = 10 and 6 + 0 = 6; 114 is also an element since 114 is divisible by 6 and 1 + 1+ 4 = 6.
		

Crossrefs

Programs

  • ARIBAS
    : var stk: stack; end; minarg := 0; maxarg := 900; n := 6; for k := minarg to maxarg do m := k*n; s := itoa(m); for j := 0 to length(s) - 1 do stack_push(stk,atoi(s[j..j])); end; if sum(stack2array(stk)) = n then write(m," "); end; end;.
  • Mathematica
    Select[ Range[ 6, 4200, 6 ], Plus @@ IntegerDigits[ # ] == 6 & ]

Extensions

More terms from Klaus Brockhaus, Jul 20 2001

A063416 Multiples of 7 whose sum of digits is equal to 7.

Original entry on oeis.org

7, 70, 133, 322, 511, 700, 1015, 1141, 1204, 1330, 2023, 2212, 2401, 3031, 3220, 4102, 5110, 7000, 10024, 10150, 10213, 10402, 11032, 11221, 11410, 12040, 12103, 13111, 13300, 15001, 20041, 20104, 20230, 21112, 21301, 22120, 23002, 24010
Offset: 1

Views

Author

Klaus Brockhaus, Jul 20 2001

Keywords

Comments

Numbers are all 7 mod 63.

Examples

			133 = 19*7 and 1+3+3 = 7, so 133 is a term of this sequence.
		

Crossrefs

Programs

  • ARIBAS
    : var stk: stack; end; minarg := 0; maxarg := 5000; n := 7; for k := minarg to maxarg do m := k*n; s := itoa(m); for j := 0 to length(s) - 1 do stack_push(stk,atoi(s[j..j])); end; if sum(stack2array(stk)) = n then write(m," "); end; end;.
    
  • Mathematica
    Select[Range[7, 25000, 7], Plus @@ IntegerDigits[ # ] == 7 &]
  • PARI
    forstep(m=0, 70000, 7, if(vecsum(digits(m))==7, print1(m, ", "))) \\ Harry J. Smith, Aug 20 2009

A069540 Multiples of 5 with digit sum 5.

Original entry on oeis.org

5, 50, 140, 230, 320, 410, 500, 1040, 1130, 1220, 1310, 1400, 2030, 2120, 2210, 2300, 3020, 3110, 3200, 4010, 4100, 5000, 10040, 10130, 10220, 10310, 10400, 11030, 11120, 11210, 11300, 12020, 12110, 12200, 13010, 13100, 14000, 20030, 20120
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[5*Range[5000],Total[IntegerDigits[#]]==5&] (* Harvey P. Dale, Nov 08 2017 *)

Extensions

Corrected and extended by Ray Chandler, Sep 28 2003

A069534 Smallest multiple of 5 with digit sum n.

Original entry on oeis.org

10, 20, 30, 40, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 195, 295, 395, 495, 595, 695, 795, 895, 995, 1995, 2995, 3995, 4995, 5995, 6995, 7995, 8995, 9995, 19995, 29995, 39995, 49995, 59995, 69995, 79995, 89995, 99995, 199995, 299995, 399995, 499995, 599995
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Comments

a(6) onwards the pattern is evident.

Crossrefs

Programs

  • Mathematica
    t={}; Do[i=5; While[Total[IntegerDigits[i]]!=n,i=i+5]; AppendTo[t,i],{n,46}]; t (* Jayanta Basu, May 19 2013 *)
    With[{f=5*Range[200000]},Flatten[Table[Select[f,Total[IntegerDigits[#]] == n&,1],{n,50}]]] (* Harvey P. Dale, Dec 31 2013 *)
  • PARI
    A069534(n)=(((n+4)%9+1)*10^((n+4)\9)-5)*10^(n<5) \\ M. F. Hasler, Sep 16 2016

Formula

a(n) = ((n+4)%9+1)*10^floor((n+4)/9)-5 for all n > 4, where % is the binary mod/remainder operator. - M. F. Hasler, Sep 16 2016
From Chai Wah Wu, Sep 15 2020: (Start)
a(n) = a(n-1) + 10*a(n-9) - 10*a(n-10) for n > 14.
G.f.: 5*x*(72*x^13 - 18*x^12 - 18*x^11 - 18*x^10 - 18*x^9 + 2*x^8 + 2*x^7 + 2*x^6 + 2*x^5 - 7*x^4 + 2*x^3 + 2*x^2 + 2*x + 2)/((x - 1)*(10*x^9 - 1)). (End)
a(n) = 5 * A077492(n). - Alois P. Heinz, Sep 15 2020

Extensions

More terms from Ray Chandler, Jul 28 2003

A069543 Multiples of 8 with digit sum 8.

Original entry on oeis.org

8, 80, 152, 224, 440, 512, 800, 1016, 1160, 1232, 1304, 1520, 2024, 2240, 2312, 2600, 3032, 3104, 3320, 4040, 4112, 4400, 5120, 6200, 8000, 10016, 10160, 10232, 10304, 10520, 11024, 11240, 11312, 11600, 12032, 12104, 12320, 13040, 13112, 13400
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, Sep 28 2003
Showing 1-10 of 12 results. Next